Mathematical Physics: Some Tricks

Pankaj Sharan
Physics Department
Jamia Millia Islamia, New Delhi

1 Green's function for Poisson equation in $n>2$ dimensions

The UGC-CSIR NET examination of December 2013 contained the following question:

The expression

$$
\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\frac{\partial^{2}}{\partial x_{3}^{2}}+\frac{\partial^{2}}{\partial x_{4}^{2}}\right)\left(\frac{1}{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}}\right)
$$

is proportional to
(A) $\delta\left(x_{1}+x_{2}+x_{3}+x_{4}\right)$
(B) $\delta\left(x_{1}\right) \delta\left(x_{2}\right) \delta\left(x_{3}\right) \delta\left(x_{4}\right)$
(C) $\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)^{-3 / 2}$
(D) $\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)^{-2}$

The answer could be deduced from dimensional analysis alone. The given expression has dimension of L^{-4} if x_{i} have dimension L. Therefore only (B) or (D) could be correct because $\delta(x)$ has dimension of $1 / x$. But the given expression is equal to zero for $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \neq 0$ as can be seen by a short calculation. Therefore (D) is ruled out, and (B) is the correct answer.

But I thought we never tell our students about the Green's function of the Poisson equation in higher dimensions, even though it is just a step from 3-dimension. Also, doing the angular integral in 3-dimensional k-space explicitly is easy, I do not know how to do in it four dimensions. So I had to go to Gelfand-Shilov to check!

The following discussion is based on $\S 3.3$, Chapter II of I. M. Gel'fand and G. E. Shilov, Generalized Functions, Volume I (Academic Press). This is the place I will turn to if I encounter any trouble with generalized functions! The student is supposed to know the definition of the Dirac delta and the Gamma functions. Just that.

1.1

The Poisson equation in n dimensions is

$$
\begin{equation*}
\nabla^{2} \phi=\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{n}^{2}}\right) \phi(\mathbf{x})=\rho(\mathbf{x}) . \tag{1}
\end{equation*}
$$

Its Green function $G(\mathbf{x})$ is defined as

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{n}^{2}}\right) G(\mathbf{x})=\delta(\mathbf{x}) \tag{2}
\end{equation*}
$$

If we represent both the Green function as well as the Dirac delta function as Fourier transforms, then

$$
\begin{align*}
G(\mathbf{x}) & =\frac{1}{(2 \pi)^{n}} \int g(\mathbf{k}) e^{i \mathbf{k} \cdot \mathbf{x}} d^{n} \mathbf{k}, \tag{3}\\
\delta(\mathbf{x}) & =\frac{1}{(2 \pi)^{n}} \int e^{i \mathbf{k} \cdot \mathbf{x}} d^{n} \mathbf{k} . \tag{4}
\end{align*}
$$

Substitution in the Poisson equation determines

$$
\begin{equation*}
g(\mathbf{k})=-\frac{1}{k^{2}}, \quad k^{2}=|\mathbf{k}|^{2}, \tag{5}
\end{equation*}
$$

and so,

$$
\begin{equation*}
G(\mathbf{x})=-\frac{1}{(2 \pi)^{n}} \int k^{-2} e^{i \mathbf{k} \cdot \mathbf{x}} d^{n} \mathbf{k} . \tag{6}
\end{equation*}
$$

1.2

To find $G(\mathbf{x})$ we calculate the slightly more general integral, (at no extra cost)

$$
\begin{equation*}
F(\mathbf{x})=\frac{1}{(2 \pi)^{n}} \int k^{\lambda} e^{i \mathbf{k} \cdot \mathbf{x}} d^{n} \mathbf{k}, \quad \lambda>-n . \tag{7}
\end{equation*}
$$

The restriction on the real parameter λ has been made to avoid trouble at $k=0$. In our case $\lambda=-2$ and $n>2$, therefore $\lambda=-2>-n$.

We first note the scaling property and rotational invariance of F.

If $a>0$ then replacing \mathbf{x} by $a \mathbf{x}$ we see that

$$
\begin{equation*}
F(a \mathbf{x})=a^{-\lambda-n} F(\mathbf{x}) \tag{8}
\end{equation*}
$$

because $\mathbf{k} \cdot a \mathbf{x}=a \mathbf{k} \cdot \mathbf{x}$ and we can change the variable of integration to $\mathbf{k}^{\prime}=a \mathbf{k}$.

Similarly, if R is a rotation in the n dimensional space, the integral doesn't change because $\mathbf{k} \cdot R \mathbf{x}=R^{-1} \mathbf{k} \cdot \mathbf{x}$ and we can change the variable of integration to $\mathbf{k}^{\prime}=R^{-1} \mathbf{k}$. Thus

$$
\begin{equation*}
F(R \mathbf{x})=F(\mathbf{x}) \tag{9}
\end{equation*}
$$

This tells us that F is a function $F(r)$ of $r=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$ only and by using the scaling property $F(r)=r^{-\lambda-n} F(1)$. Thus,

$$
\begin{equation*}
F(\mathbf{x})=C r^{-\lambda-n} \tag{10}
\end{equation*}
$$

and the remaining effort now is to calculate the constant C which can only depend on n and λ.

1.3

The trick to evaluate C is to multiply both sides of (7) by $\exp \left(-x_{1}^{2}-\right.$ $\left.\cdots-x_{n}^{2}\right)=\exp \left(-r^{2}\right)$ and integrate over all \mathbf{x} space. The left hand side is

$$
\int F(\mathbf{x}) e^{-r^{2}} d^{n} \mathbf{x}=C \int_{0}^{\infty} r^{-\lambda-n} e^{-r^{2}} r^{n-1} d r d \Omega_{n}
$$

where

$$
d^{n} \mathbf{x}=r^{n-1} d r d \Omega_{n}
$$

and $d \Omega_{n}$ are the $(n-1)$-fold integrations over angular variables in n-dimensions. The angular integrations are trivially equal to Ω_{n}
the measure of surface of the unit sphere in n-dimensions. Thus, using the definition of the Gamma function,

$$
\begin{equation*}
\int F(\mathbf{x}) \exp \left(-x_{1}^{2}-\cdots-x_{n}^{2}\right) d^{n} \mathbf{x}=\frac{1}{2} C \Omega_{n} \Gamma\left(-\frac{\lambda}{2}\right) . \tag{11}
\end{equation*}
$$

On the other hand, the right hand side is equal to

$$
\frac{1}{(2 \pi)^{n}} \int k^{\lambda} e^{i \mathbf{k} \cdot \mathbf{x}-x_{1}^{2}-\cdots-x_{n}^{2}} d^{n} \mathbf{k} d^{n} \mathbf{x}
$$

Doing the \mathbf{x} integrals, and using integrals like

$$
\int e^{i k_{1} x_{1}-x_{1}^{2}} d x_{1}=\sqrt{\pi} e^{-k_{1}^{2} / 4}
$$

we reduce the integration to

$$
\begin{equation*}
\frac{(\pi)^{n / 2}}{(2 \pi)^{n}} \int_{0}^{\infty} k^{\lambda+n-1} e^{-k^{2} / 4} d k d \Omega_{n}=2^{\lambda-1}(\pi)^{-n / 2} \Omega_{n} \Gamma\left(\frac{\lambda+n}{2}\right) \tag{12}
\end{equation*}
$$

Equating (11) and (12), we get the answer

$$
C=2^{\lambda}(\pi)^{-n / 2} \frac{\Gamma\left(\frac{\lambda+n}{2}\right)}{\Gamma\left(-\frac{\lambda}{2}\right)}
$$

and so,

$$
\begin{equation*}
\frac{1}{(2 \pi)^{n}} \int k^{\lambda} e^{i \mathbf{k} \cdot \mathbf{x}} d^{n} \mathbf{k}=2^{\lambda}(\pi)^{-n / 2} \frac{\Gamma\left(\frac{\lambda+n}{2}\right)}{\Gamma\left(-\frac{\lambda}{2}\right)} r^{-n-\lambda} \tag{13}
\end{equation*}
$$

1.4

Coming back to our original problem in (6), for which $\lambda=-2$, we see that

$$
\begin{equation*}
G(\mathbf{x})=-\frac{(\pi)^{-n / 2}}{4} \Gamma\left(\frac{n}{2}-1\right) r^{-n+2} \tag{14}
\end{equation*}
$$

is the Green's function for Poisson equation in n-dimensions. For three dimensions it reduces to the familiar and important result

$$
G(\mathbf{x})=-\frac{1}{4 \pi r},
$$

and in four dimensions

$$
G(\mathbf{x})=-\frac{4}{\pi^{2} r^{2}} .
$$

