
Mathematical Physics: Some Tricks

Pankaj Sharan

Physics Department

Jamia Millia Islamia, New Delhi



1 Green’s function for Poisson equation in

n > 2 dimensions

The UGC-CSIR NET examination of December 2013 contained
the following question:

The expression

(

∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23
+

∂2

∂x24

)

(

1

x21 + x22 + x23 + x24

)

is proportional to
(A)δ(x1 + x2 + x3 + x4)
(B) δ(x1)δ(x2)δ(x3)δ(x4)
(C) (x21 + x22 + x23 + x24)

−3/2

(D) (x21 + x22 + x23 + x24)
−2

The answer could be deduced from dimensional analysis alone.
The given expression has dimension of L−4 if xi have dimension
L. Therefore only (B) or (D) could be correct because δ(x) has
dimension of 1/x. But the given expression is equal to zero for
x21 + x22 + x23 + x24 6= 0 as can be seen by a short calculation.
Therefore (D) is ruled out, and (B) is the correct answer.

But I thought we never tell our students about the Green’s
function of the Poisson equation in higher dimensions, even though
it is just a step from 3-dimension. Also, doing the angular integral
in 3-dimensional k-space explicitly is easy, I do not know how to
do in it four dimensions. So I had to go to Gelfand-Shilov to check!

The following discussion is based on § 3.3, Chapter II of I.
M. Gel’fand and G. E. Shilov, Generalized Functions, Volume I
(Academic Press). This is the place I will turn to if I encounter
any trouble with generalized functions! The student is supposed to
know the definition of the Dirac delta and the Gamma functions.
Just that.
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1.1

The Poisson equation in n dimensions is

∇2φ =

(

∂2

∂x21
+ · · ·+ ∂2

∂x2n

)

φ(x) = ρ(x). (1)

Its Green function G(x) is defined as
(

∂2

∂x21
+ · · · + ∂2

∂x2n

)

G(x) = δ(x). (2)

If we represent both the Green function as well as the Dirac delta
function as Fourier transforms, then

G(x) =
1

(2π)n

∫

g(k)eik·x dnk, (3)

δ(x) =
1

(2π)n

∫

eik·x dnk. (4)

Substitution in the Poisson equation determines

g(k) = − 1

k2
, k2 = |k|2, (5)

and so,

G(x) = − 1

(2π)n

∫

k−2eik·x dnk. (6)

1.2

To find G(x) we calculate the slightly more general integral, (at
no extra cost)

F (x) =
1

(2π)n

∫

kλeik·x dnk, λ > −n. (7)

The restriction on the real parameter λ has been made to avoid
trouble at k = 0. In our case λ = −2 and n > 2, therefore
λ = −2 > −n.

2



We first note the scaling property and rotational invariance of
F .

If a > 0 then replacing x by ax we see that

F (ax) = a−λ−nF (x), (8)

because k·ax = ak·x and we can change the variable of integration
to k

′ = ak.

Similarly, if R is a rotation in the n dimensional space, the
integral doesn’t change because k · Rx = R−1

k · x and we can
change the variable of integration to k

′ = R−1
k. Thus

F (Rx) = F (x). (9)

This tells us that F is a function F (r) of r =
√

x21 + · · · + x2n only

and by using the scaling property F (r) = r−λ−nF (1). Thus,

F (x) = Cr−λ−n, (10)

and the remaining effort now is to calculate the constant C which
can only depend on n and λ.

1.3

The trick to evaluate C is to multiply both sides of (7) by exp(−x21−
· · ·−x2n) = exp(−r2) and integrate over all x space. The left hand
side is

∫

F (x)e−r2dnx = C

∫

∞

0

r−λ−ne−r2rn−1dr dΩn

where

dnx = rn−1dr dΩn

and dΩn are the (n− 1)-fold integrations over angular variables in
n-dimensions. The angular integrations are trivially equal to Ωn
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the measure of surface of the unit sphere in n-dimensions. Thus,
using the definition of the Gamma function,

∫

F (x) exp(−x21 − · · · − x2n)d
n
x =

1

2
CΩnΓ

(

−λ

2

)

. (11)

On the other hand, the right hand side is equal to

1

(2π)n

∫

kλeik·x−x2

1
−···−x2

n dnkdnx.

Doing the x integrals, and using integrals like

∫

eik1x1−x2

1dx1 =
√
πe−k2

1
/4

we reduce the integration to

(π)n/2

(2π)n

∫

∞

0

kλ+n−1e−k2/4 dk dΩn = 2λ−1(π)−n/2ΩnΓ

(

λ+ n

2

)

(12)

Equating (11) and (12), we get the answer

C = 2λ(π)−n/2
Γ
(

λ+n
2

)

Γ
(

−λ
2

) ,

and so,

1

(2π)n

∫

kλeik·x dnk = 2λ(π)−n/2
Γ
(

λ+n
2

)

Γ
(

−λ
2

) r−n−λ. (13)

1.4

Coming back to our original problem in (6), for which λ = −2, we
see that

G(x) = −(π)−n/2

4
Γ

(

n

2
− 1

)

r−n+2 (14)
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is the Green’s function for Poisson equation in n-dimensions. For
three dimensions it reduces to the familiar and important result

G(x) = − 1

4πr
,

and in four dimensions

G(x) = − 4

π2r2
.
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