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Summary: In this lecture we discuss a boundary value problem involving a circular bound-

ary in a plane. We show how solutions of the Laplace equation can be obtained for regions

inside (or outside) the circle.

Example: Laplace Equation In Plane Polar Coordinates

We will now solve the Laplace equation

∇2u(r, φ) = 0 (1)

in two dimensions in plane polar coordinates. Obtain the most general form of solution.

We shall then show how to fix the unknown constants appearing in the solution obtained

if we know value of u(r, φ) on a circle and determine the solution every where inside

(or outside) the circle of radius R0. For this purpose we assume that on the circle the

boundary condition is given by

u(r = R0, φ) = f(φ) (2)

where f(φ) is a given function of φ and that u(r, φ) is finite everywhere inside the circle.

The Laplace equation written in plane polar coordinates (r, φ) takes the form

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2

∂φ2
= 0 (3)

Substitute u(r, φ) = R(r)P (φ) in the Laplace equation Eq.(3) and divide by R(r)P (φ)

and also multiply by r2 to get

r2
1

R

d2R

dr2
+ r

1

R

dR

dr
+

1

P

d2P

dφ2
= 0 (4)
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This gives
d2P

dφ2
= µP (5)

and

r2
d2R

dr2
+ r

dR

dr
+ µR = 0 (6)

where µ is a constant. We shall take up the cases µ = 0 and µ 6= 0 separately.

Case µ = 0 Eq.(5) has solution

P (φ) = A0 +B0φ (7)

and Eq.(6) assumes the form

r2
d2R

dr2
+ r

dR

dr
= 0 (8)

or

r
d

dr
(r
dR(r)

dr
) = 0 (9)

giving

r
dR

dr
= constant, say,C0 (10)

This has the obvious solution

R(r) = C0 log r +D0 (11)

Case µ 6= 0 In this case the Eq.(5) has solutions

P (φ) = A exp(
√
µφ) +B exp(−√

µφ) (12)

The equation Eq.(6) for R(r) is easily solved to give

R(r) = Cr
√
−µ +Dr−

√
−µ (13)

Requirement of single valuedness :

This completes the solution of the Laplace equation in polar coordinates. Usually one

imposes the requirement thatu(r, π) be single valued. To understand this requirement

note that, for arbitrary r, φ and φ+2π correspond to the same point on the plane. Hence

we must have

u(r, φ) = u(r, φ + 2π) (14)

This implies that P (φ) must be a periodic function of φ with period 2π. Thus circular

boundary

P (φ) = P (φ+ 2π) (15)

when expanded Eq.(15) becomes Eq.(16)

A exp(
√
µφ) +B exp(−√

µφ) = A exp(
√
µ(φ+ 2π)) +B exp(−√

µ(φ+ 2π)) (16)

2



A exp(
√
µφ)[1 − exp(

√
µ2π)] +B exp(−√

µφ)[1− exp(
√
µ2π)] = 0 (17)

The above relation must be satisfied for all values of φ. Due to the linear indepen-

dence of exp(
√
µφ) and exp(−√

µφ) for µ 6= 0, Eq.(17) implies that the the expressions

multiplying the two exponentials must be separately be zero. This is satisfied if

exp(
√
µ2π) = 1 (18)

This restricts the allowed values of µ to

√
µ = in (19)

where n is a non- zero integer. Noting that P (φ) becomes

P (φ) = A exp(inφ) +B exp(−inφ) (20)

or equivalently P (φ) can be taken to be

P (φ) = acos(nφ) + bsin(nφ) (21)

Using −µ = n2 in Eq.(13), and forming the superposition the most general solution can

be cast in the form

u(r, φ) = a0 + b0 log r +
∞∑
n=1

(Cnr
n +Dnr

−n)(an cos(nφ) + bn sin(nφ)) (22)

Solution inside the circle

In this case we are looking for a solution finite near r = 0 and we must set Dn = 0 and

b0 = 0. This is the case when solution for of u(r, φ) inside the circle is needed. For the

interior the solution can now be further simplified to the form

u(r, φ) = a0 +

∞∑
n=1

rn(an cos(nφ) + bn sin(nφ)) (23)

Here Cn has been set equal to 1. This does not mean any loss of generality because the

constants an and bn are as yet unknown.

The unknown coefficients an and bn in Eq.(23) and can be determined by imposing

the requirement that u(r, φ) reduce to the given function f(φ) on the circle

u(r = R0, φ) = f(φ). (24)

As usual this implies that,

an =
1

2π

1

Rn

0

∫
π

0

f(φ) cos(nφ)dφ. (25)

bn =
1

2π

1

Rn

0

∫
π

0

f(φ) sin(nφ)dφ. (26)
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Solution outside the circle:

The solution finite everywhere outside the circle is similarly obtained by setting the con-

stants Cn and b0 of Eq.(22) are to set equal to zero. The corresponding solution assumes

the form

u(r, φ) = a0 +
∞∑
n=1

r−n(an cos(nφ) + bn sin(nφ)) (27)

Again, the unknown coefficients an and bn in Eq.(27) can be determined by imposing the

requirement that u(r, φ) reduce to the given function f(φ) on the circle

u(r = R0, φ) = f(φ) (28)

This implies that the coefficients an and bn are given by

an = Rn

0

1

2π

∫
π

0

f(φ) cos(nφ)dφ (29)

and

bn = Rn

0

1

2π

∫
π

0

f(φ) sin(nφ)dφ (30)

So far we have discussed only those examples which, by means of separation of variables,

lead to solution in terms of Fourier series expansion. In the next lecture we shall now take

up the important case of problems in three dimensions with spherical symmetry which

leads to series expansion in terms of special functions.
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