Setting up the solution

The branch cut for $z^{p},(z-1)^{q}$ is given to be along the positive real axis so we take the definition of the two functions as

$$
\begin{align*}
z^{p} & =r^{p} e^{i p \theta}, & & 0<\theta<2 \pi \tag{1}\\
(z-1)^{q} & =\rho^{q} e^{i q \phi}, & & 0<\phi<2 \pi . \tag{2}
\end{align*}
$$

Fig. 1
It is important that while computing the values of the functions and derivatives the values of θ, ϕ must be taken in the ranges as specified in (1) and (2). We shall find the Taylor series for the two functions z^{p} and $(z-1)^{q}$ separately and multiply the two series to find the series for the function $f(z)$.

Prepare for computing the values at the point -1 :

From the definitions of r, θ, ρ and ϕ we see, from the figure that for the point $z_{0}=-1$, we have

$$
r=1, \theta=\pi ; \quad \rho=2, \phi=\pi
$$

Therefore

$$
\begin{equation*}
z_{0}=\left|z_{0}\right| e^{i \pi}=e^{i \pi} ; \quad\left(z_{0}-1\right)^{q}=2^{q} e^{i q \phi} \tag{3}
\end{equation*}
$$

Taylor series of z^{p} : We compute the successive derivatives at $z=z_{0}=-1$

$$
\begin{align*}
a_{0} & =\left.z^{p}\right|_{z=-1}=e^{i p \pi} \tag{4}\\
a_{1} & =\left.\frac{d z^{p}}{d z}\right|_{z=-1}=\left.p z^{p-1}\right|_{z=-1}=p e^{i(p-1) \pi}=-p e^{i p \pi} \tag{5}\\
a_{2} & =\left.\frac{1}{2} \frac{d^{2} z^{p}}{d z^{2}}\right|_{z=-1} \tag{6}\\
& =\left.\frac{1}{2} p(p-1) z^{p-2}\right|_{z=-1}=\frac{1}{2} p(p-1) e^{i p \pi} \tag{7}
\end{align*}
$$

Hence the Taylor series is given by

$$
\begin{equation*}
z^{p}=e^{i p \pi}\left[1-p w-\frac{p(p-1)}{2} w^{2}+\ldots\right] \tag{8}
\end{equation*}
$$

where $w=z-z_{0}=z+1$.

Taylor series of $(z-1)^{q}$: The successive derivatives at $z=z_{0}$ are given by

$$
\begin{align*}
a_{0} & =\left.(z-1)^{q}\right|_{z=-1}=2^{q} e^{i q \pi} \tag{9}\\
a_{1} & =\left.\frac{d(z-1)^{q}}{d z}\right|_{z=-1}=q z^{q-1}=-q 2^{q-1} e^{i q \pi} \tag{10}\\
a_{2} & =\left.\frac{1}{2} \frac{d^{2}(z-1)^{q}}{d z^{2}}\right|_{z=-1} \tag{11}\\
& =\left.\frac{1}{2} q(q-1) z^{q-1}\right|_{z=-1}=2^{q-2} \frac{q(q-1)}{2} e^{i q \pi} \tag{12}
\end{align*}
$$

Hence the Taylor series is given by

$$
\begin{equation*}
(z-1)^{q}=e^{i q \pi} 2^{q}\left[1-\frac{q w}{2}+\frac{q(q-1)}{8} w^{2}+\ldots\right] \tag{13}
\end{equation*}
$$

(Note that we have taken 2^{q} out as a common factor.)
Taylor series of the product $z^{p}(z-1)^{q}$: We multiply the two Taylor series in (8) and (13) to get the final answer as

$$
\begin{align*}
& z^{p}(z-1)^{q} \\
& \quad=e^{i p \pi}\left[1-p w-\frac{p(p-1)}{2} w^{2}+\ldots\right] \times e^{i q \pi} 2^{q}\left[1-\frac{q w}{2}+\frac{q(q-1)}{8} w^{2}+\ldots\right] \\
& \quad=2^{q} e^{i(p+q) \pi}\left[1-(p+q / 2) w+\left(\frac{p q}{2}-\frac{p(p-1)}{2}+\frac{q(q-1)}{8}\right) w^{2}+\ldots\right] \tag{14}
\end{align*}
$$

For $p=1-q$ the series reduces to

$$
\begin{align*}
& \left.z^{(} 1-q\right)(z-1)^{q} \\
& \quad=2^{q} e^{i(p+q)}\left[1-(p+q / 2) w-\left(\frac{p(1-p)}{2}+\frac{p(p-1)}{2}-\frac{q(q-1)}{8}\right) w^{2}+\ldots\right] \\
& \quad=-2^{q}\left(1+\frac{2-q}{2} w+\frac{q(q-1)}{8} w^{2}+\ldots\right) \tag{15}
\end{align*}
$$

cv-ymp-05001	Ver 20.x	Created : Jul 8, 2020	Printed: July 8, 2020
Proofs	LICENSE: CREATIVE COMMONS		No WARRANTY, IMPLIED OR OTHERWISE
Open EEXFile	Cv-ymp-05001		

