VS-01 Lessons in Vectors Spaces

Vector Spaces and Subspaces

$\begin{array}{c} {\rm A.\ K.\ Kapoor}\\ {\rm http://0space.org/users/kapoor} \end{array}$

akkapoor@cmi.ac.in; akkhcu@gmail.com

Contents

$\S 1$	Lesson Overview	1
§ 2	Lessons	1
	§2.1 Vector Spaces	1
	§2.2 Subspaces	3
§ 3	EndNotes	4

§1 Lesson Overview

Syllabus Vector Spaces; Subspace of a vector space

Prerequisites Basic set theory; Groups and fields

Lesson Objectives To define vector space and subspace; to illustrate the definitions with examples and counter examples.

§2 Lessons

§2.1 Vector Spaces

Definition 1 Let \mathcal{F} be a field and + be a binary operation defined on a set \mathcal{V} . The triple $\langle \mathcal{V}, +, \mathbb{F} \rangle$ is a vector space on a field \mathcal{F} if the following properties are satisfied.

- (V-1) To every pair of vectors $f,g\in\mathcal{V}$, there corresponds a vector $f+g\in\mathcal{V}$ called the sum of f and g such that
 - (i) f + g = g + f $\forall f, g \in \mathcal{V}$
 - (ii) f + (g + h) = (f + g) + h $\forall f, g, h \in \mathcal{V}$

(iii) \exists a unique vector $0 \in \mathcal{V}$ such that

$$f + 0 = f \qquad \forall \ f \in \mathcal{V}$$

(iv) To every vector $f \in \mathcal{V}$, there corresponds a vector $-f \in \mathcal{V}$ such that

$$f + (-f) = 0$$

(V-2) $\forall \alpha \in \mathcal{F}$ and $f \in \mathcal{V}$ there corresponds a unique vector $\alpha f \in \mathcal{V}$ such that

$$\alpha(\beta f) = (\alpha \beta) f \quad \forall \alpha, \beta \in \mathcal{F}$$

and

$$1.f = f \qquad \forall f \in \mathcal{V}$$

(V-3) $\forall \alpha, \beta \in \mathcal{F} \text{ and } \forall f, g \in \mathcal{V} \text{ we have }$

$$(\alpha + \beta)f = \alpha f + \beta f$$

and

$$\alpha(f+g) = \alpha f + \alpha g$$

Examples Of Vector Spaces

- (I) 1. Every field \mathcal{F} is also a vector space over \mathcal{F} as field of scalars. Thus we have the following important special examples of vector spaces.
 - 2. Set of all complex numbers \mathbb{C} is a complex vector space with \mathbb{C} as the field of scalars.
 - 3. Set of all real numbers \mathbb{R} is a real vector space with \mathbb{R} as the field of scalars.
 - 4. Set of all rational numbers \mathbb{Q} is a rational vector space with \mathbb{Q} as the field of scalars.
- (II) Set of all n-tuples $(\alpha_1, \alpha_2, ..., \alpha_n)$ where $\alpha_k \in \mathcal{F}$ is denoted by \mathcal{F}^n . This set is vector space with \mathcal{F} as field of scalars. Thus
 - 1. \mathbb{C}^n is a complex vector space over \mathbb{C} as the field of scalars.
 - 2. \mathbb{R}^n is a real vector space over \mathbb{R} as the field of scalars.
 - 3. \mathbb{Q}^n is a rational vector space over \mathbb{Q} as the field of scalars.
- (III) 1. All polynomials in a variable t, with coefficients in any field \mathcal{F} is vector space \mathscr{P} .

$$\mathscr{P} = \{p(t)|p(t) = \alpha_0 + \alpha_1 t + \alpha_2 t + \dots + \alpha_n t^n + \dots \text{ and } \alpha_i \in \mathfrak{F}\}$$

Here \mathcal{F} can be any of the fields such as $\mathbb{C}, \mathbb{R}, \mathbb{Q}, \dots$

2. Consider the set \mathscr{P} of all polynomials in a variable t, with coefficients in any field \mathscr{F} and consider the subset \mathscr{P}_N consisting of all polynomials of degree $\leq N$. Then \mathscr{P}_N is a vector space.

- (IV) 1. Let \mathcal{F} be set of all functions defined on an interval [a, b] and having complex values. With any one of the fields \mathbb{C}, \mathbb{R} , or \mathcal{Q}, \mathcal{F} is a vector space.
 - 2. Let \mathcal{F} be as in (IV-1) and $\mathscr{C}^{(0)}$ be the subset of all continuous functions. Then $C^{(0)}$ is a vector space.
 - 3. Let \mathcal{F} be as in (IV-1) and $C^{(r)}$ be the subset of all functions for which r-derivatives exist and are continuous on [a,b]. The $C^{(r)}$ is a vector space.
 - 4. Let $\mathscr{C}^{(0)}$ be as in (IV-2). Let S be a subset of $\mathscr{C}^{(0)}$ consisting of those functions which vanish at a given point x_0 . Then S is vector space. In general, if one can takes all functions which vanish at x_1, x_2, \ldots, x_n then also we get a vector space.
- (V) Let \mathbb{M}_N be the set of all $N \times N$ matrices whose element are scalars from a field \mathcal{F} . With standard matrix addition as vector addition \mathbb{M}_N is a vector space over the same field \mathcal{F}
- (VI) The set of all functions f on an interval [a, b], for which $\int_a^b |f(x)|^p dx$ is finite, is a vector space denoted by $\mathcal{L}^p[a, b]$. That addition of two functions in $\mathcal{L}^p[a, b]$ gives back a function in the same space will not be proved here. The space $\mathcal{L}^p[a, b]$, for p = 2, is the set of all square integrable functions on the interval [a, b].
- (VII) The set of all infinite sequences $(\alpha_1, \alpha_2, \ldots, \ldots)$, such that the infinite series

$$\sum_{k=1}^{\infty} |\alpha_k|^p$$

converges, is a vector space denoted by ℓ^p . That the sum of two sequences, $\alpha, \beta \in \ell^p$ is also in ℓ^p , space requires a proof which will not be given here.

(VIII) A set {0}, consisting of only one element, the null vector, is a vector space over any field.

§2.2 Subspaces

Definition 2 Let V be a vector space over a field \mathcal{F} . Let \mathscr{S} be a subset of V. Let the vector addition in \mathscr{S} be defined in the same way as in V. If \mathscr{S} is also vector space over the same field \mathcal{F} , we say that \mathscr{S} is subspace of V.

Examples Of Subspaces

- 1. Every vector space \mathcal{V} is subspace of itself.
- 2. The subset having only the null vector, 0, is a subspace of every vector space.
- 3. Let \mathcal{V}_1 be the vector space of complex numbers over the field of real numbers. Let \mathcal{V}_2 be the vector space of all real numbers with \mathbb{R} as the field of scalars. The \mathcal{V}_2 is a subspace of \mathcal{V}_1 .

- 4. The set $C^{(1)}$ of functions with continuous first derivative is a subspace of the vector space of all continuous functions with the same field of scalars.
- 5. Let $C^{(0)}[a,b]$ be the set of all continuous complex valued functions on the interval [a,b]. This set is a vector space and we have
 - (a) the subset consisting of of all functions which vanish at a given point x_0 is a subspace.
 - (b) the subset of $C^{(0)}$ consisting of all functions having value 1/2 at a point x_0 is not a subspace.
 - (c) The set of all solutions of a linear differential equation

$$a_0(x)\frac{d^ny}{dx^n} + a_1(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + y(x) = 0$$

is a vector space.

6. Consider the set of all vectors in three dimensions, \mathbb{R}^3 which is real vector space. The subset S_1 of all vectors which are multiples of a fixed vector \vec{A} and the subset S_2 of all vectors in a given fixed plane passing through the origin, and are two examples of subspaces of \mathbb{R}^3 .

It is easy to see that intersection of two subspaces of a vector space is again a subspace.

§3 EndNotes

References

- 1. Halmos P. R. Finite Dimensional Vector Spaces Springer Verlag, East West Edition (1974).
- 2. Fraleigh J. B. A First Course in Abstract Algebra, Pearson Education Limited, Essex, (2014).

20.x Created: June 4, 2020 Printed: June 4, 2020

LICENSE: CREATIVE COMMONS

KApoor

NO WARRANTY, IMPLIED OR OTHERWISE

Open MEXFile

0space.org/node/3593