VS-01 Lessons in Vectors Spaces

Vector Spaces and Subspaces

A. K. Kapoor http://0space.org/users/kapoor akkapoor@cmi.ac.in; akkhcu@gmail.com

Contents

§1 Lesson Overview

Syllabus Vector Spaces; Subspace of a vector space

Prerequisites Basic set theory; Groups and fields

Lesson Objectives To define vector space and subspace; to illustrate the definitions with examples and counter examples.

§2 Lessons

§2.1 Vector Spaces

Definition 1 Let $\mathcal F$ be a field and $+$ be a binary operation defined on a set $\mathcal V$. The triple $\langle V, +, \mathbb{F} \rangle$ is a vector space on a field $\mathcal F$ if the following properties are satisfied.

(V-1) To every pair of vectors $f, g \in \mathcal{V}$, there corresponds a vector $f + g \in \mathcal{V}$ called the sum of f and g such that

(i)
$$
f + g = g + f
$$
 $\forall f, g \in \mathcal{V}$
\n(ii) $f + (g + h) = (f + g) + h$ $\forall f, g, h \in \mathcal{V}$

(iii) \exists a unique vector $0 \in \mathcal{V}$ such that

$$
f + 0 = f \qquad \forall \ f \in \mathcal{V}
$$

(iv) To every vector $f \in \mathcal{V}$, there corresponds a vector $-f \in \mathcal{V}$ such that

$$
f + (-f) = 0
$$

(V-2) $\forall \alpha \in \mathcal{F}$ and $f \in \mathcal{V}$ there corresponds a unique vector $\alpha f \in \mathcal{V}$ such that

$$
\alpha(\beta f) = (\alpha \beta)f \qquad \forall \alpha, \beta \in \mathcal{F}
$$

and

$$
1.f = f \qquad \forall f \in \mathcal{V}
$$

(V-3) $\forall \alpha, \beta \in \mathcal{F}$ and $\forall f, g \in \mathcal{V}$ we have

$$
(\alpha + \beta)f = \alpha f + \beta f
$$

and

$$
\alpha(f+g) = \alpha f + \alpha g
$$

Examples Of Vector Spaces

- (I) 1. Every field $\mathcal F$ is also a vector space over $\mathcal F$ as field of scalars. Thus we have the following important special examples of vector spaces.
	- 2. Set of all complex numbers $\mathbb C$ is a complex vector space with $\mathbb C$ as the field of scalars.
	- 3. Set of all real numbers $\mathbb R$ is a real vector space with $\mathbb R$ as the field of scalars.
	- 4. Set of all rational numbers $\mathbb Q$ is a rational vector space with $\mathbb Q$ as the field of scalars.
- (II) Set of all n-tuples $(\alpha_1, \alpha_2, ..., \alpha_n)$ where $\alpha_k \in \mathcal{F}$ is denoted by \mathcal{F}^n . This set is vector space with $\mathcal F$ as field of scalars. Thus
	- 1. \mathbb{C}^n is a complex vector space over $\mathbb C$ as the field of scalars.
	- 2. \mathbb{R}^n is a real vector space over $\mathbb R$ as the field of scalars.
	- 3. \mathbb{Q}^n is a rational vector space over $\mathbb Q$ as the field of scalars.
- (III) 1. All polynomials in a variable t, with coefficients in any field $\mathcal F$ is vector space \mathscr{P} .

$$
\mathscr{P} = \{p(t)|p(t) = \alpha_0 + \alpha_1 t + \alpha_2 t + \dots + \alpha_n t^n + \dots \text{and } \alpha_j \in \mathcal{F}\}
$$

Here $\mathcal F$ can be any of the fields such as $\mathbb C, \mathbb R, \mathbb Q, \ldots$

2. Consider the set $\mathscr P$ of all polynomials in a variable t, with coefficients in any field $\mathscr F$ and consider the subset $\mathscr P_N$ consisting of all polynomials of degree $\leq N$. Then \mathscr{P}_N is a vector space.

- (IV) 1. Let $\mathcal F$ be set of all functions defined on an interval [a, b] and having complex values. With any one of the fields \mathbb{C}, \mathbb{R} , or \mathscr{Q}, \mathscr{F} is a vector space.
	- 2. Let $\mathcal F$ be as in (IV-1) and $\mathscr{C}^{(0)}$ be the subset of all continuous functions. Then $C^{(0)}$ is a vector space.
	- 3. Let $\mathcal F$ be as in (IV-1) and $C^{(r)}$ be the subset of all functions for which rderivatives exist and are continuous on [a, b]. The $C^{(r)}$ is a vector space.
	- 4. Let $\mathscr{C}^{(0)}$ be as in (IV-2). Let S be a subset of $\mathscr{C}^{(0)}$ consisting of those functions which vanish at a given point x_0 . Then S is vector space. In general, if one can takes all functions which vanish at x_1, x_2, \ldots, x_n then also we get a vector space.
- (V) Let M_N be the set of all $N \times N$ matrices whose element are scalars from a field $\mathcal F$. With standard matrix addition as vector addition $\mathbb M_N$ is a vector space over the same field F
- (VI) The set of all functions f on an interval $[a, b]$, for which $\int_a^b |f(x)|^p dx$ is finite, is a vector space denoted by $\mathscr{L}^p[a,b]$. That addition of two functions in $\mathscr{L}^p[a,b]$ gives back a function in the same space will not be proved here. The space $\mathscr{L}^p[a,b]$, for $p = 2$, is the set of all square integrable functions on the interval [a, b].
- (VII) The set of all infinite sequences $(\alpha_1, \alpha_2, \ldots, \ldots)$, such that the infinite series

$$
\sum_{k=1}^\infty |\alpha_k|^p
$$

converges, is a vector space denoted by ℓ^p . That the sum of two sequences, $\alpha, \beta \in \ell^p$ is also in ℓ^p , space requires a proof which will not be given here.

(VIII) A set $\{0\}$, consisting of only one element, the null vector, is a vector space over any field.

§2.2 Subspaces

Definition 2 Let $\mathcal V$ be a vector space over a field $\mathcal F$. Let $\mathcal S$ be a subset of $\mathcal V$. Let the vector addition in $\mathscr S$ be defined in the same way as in $\mathcal V$. If $\mathscr S$ is also vector space over the same field $\mathfrak F$, we say that $\mathscr S$ is **subspace** of $\mathcal V$.

Examples Of Subspaces

- 1. Every vector space $\mathcal V$ is subspace of itself.
- 2. The subset having only the null vector, 0, is a subspace of every vector space.
- 3. Let \mathcal{V}_1 be the vector space of complex numbers over the field of real numbers. Let \mathcal{V}_2 be the vector space of all real numbers with R as the field of scalars. The \mathcal{V}_2 is a subspace of \mathcal{V}_1 .
- 4. The set $C^{(1)}$ of functions with continuous first derivative is a subspace of the vector space of all continuous functions with the same field of scalars.
- 5. Let $C^{(0)}[a,b]$ be the set of all continuous complex valued functions on the interval $[a, b]$. This set is a vector space and we have
	- (a) the subset consisting of of all functions which vanish at a given point x_0 is a subspace.
	- (b) the subset of $C^{(0)}$ consisting of all functions having value $1/2$ at a point x_0 is not a subspace.
	- (c) The set of all solutions of a linear differential equation

$$
a_0(x)\frac{d^n y}{dx^n} + a_1(x)\frac{d^{n-1} y}{dx^{n-1}} + \ldots + y(x) = 0
$$

is a vector space.

6. Consider the set of all vectors in three dimensions, \mathbb{R}^3 which is real vector space. The subset S_1 of all vectors which are multiples of a fixed vector \vec{A} and the subset S_2 of all vectors in a given fixed plane passing through the origin, and are two examples of subspaces of \mathbb{R}^3 .

It is easy to see that intersection of two subspaces of a vector space is again a subspace.

§3 EndNotes

References

- 1. Halmos P. R. Finite Dimensional Vector Spaces Springer Verlag, East West Edition (1974).
- 2. Fraleigh J. B. A First Course in Abstract Algebra, Pearson Education Limited, Essex, (2014).

