VS-01 Lessons in Vectors Spaces Groups and Fields

A. K. Kapoor http://0space.org/users/kapoor

akkapoor@cmi.ac.in; akkhcu@gmail.com

Contents

§1	Lesson Overview	1
§2	Lessons	1
	$\S2.1$ Groups	1
	$\S2.2$ Fields	2
§3	EndNotes	3

§1 Lesson Overview

Syllabus Groups, Fields

Lesson Objectives You will learn definition of group and field with some examples and counter examples.

Prerequisite Basic set theory, binary operation

§2 Lessons

§2.1 Groups

Definition 1 To every ordered pair $\langle a, b \rangle$ of elements of a set \mathfrak{X} a binary operation assigns an element, denoted by a * b, of the set \mathfrak{X} . For a binary operation to be a valid one it must be defined for all pairs and the a * b must belong to the set and the result of binary operation must be unique.

Definition 2 A group is a pair $\langle \mathfrak{G}, * \rangle$ with a binary operation * defined on a set \mathfrak{G} such that the following properties.

- (G-1) Associative property : $a * (b * c) = (a * b) * c \quad \forall a, b, c \in \mathcal{G}$
- (G-2) Existence of identity : \exists an element $e \in \mathcal{G}$ such that

$$e * a = a * e = a \qquad \forall \ a \in \mathcal{G}.$$

(G-3) Existence of inverse : $\forall a \in \mathcal{G}$ there exists an element a' such that

$$a * a' = a' * a = e$$

Examples Of Groups

- 1. The set of all real numbers \mathbb{R} forms a group with addition as the binary operation.
- 2. The set of all complex numbers \mathbb{C} is a group with addition as group operation.
- 3. The set of all positive, non-zero, real numbers \mathbb{R}^+ is a group with respect to multiplication as group operation.
- 4. The set of all $N \times N$ real (or complex) matrices form a group under matrix addition.
- 5. The group of all $N \times N$ real (or complex) matrices with determinant $\neq 0$ form a group under the matrix multiplication.

§2.2 Fields

Definition 3 A field \mathcal{F} is a triple $\langle \mathcal{F}, +, \cdot \rangle$, where, \cdot and + are two binary operations defined on a set \mathcal{F} such that the axioms (F-I) to (F-III), given below, are satisfied. The elements of the field will be called scalars and will be denoted by greek letters $\alpha, \beta, \gamma, \ldots$.

- (F-1) To every pair α, β the scalar $\alpha + \beta$ is called the **sum** of α, β which satsifies the following axioms $\forall \alpha, \beta, \gamma \in \mathcal{F}$
 - (i) $\alpha + \beta = \beta + \alpha$
 - (ii) $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$
 - (iii) \exists a unique scalar 0 such that $0 + \alpha = \alpha = \alpha + 0$
 - (iv) $\forall \alpha \in \mathcal{F} \exists$ a unique scalar $(-\alpha) \in \mathcal{F}$ we have $\alpha + (-\alpha) = 0$

These properties imply that \mathcal{F} is a group with + as binary operation.

- (F-2) The scalar $\alpha \cdot \beta$ will be called the **product** of α, β and has the following properties.
 - (i) Commutative Property : $\alpha \cdot \beta = \beta \cdot \alpha$
 - (ii) Associative Property : $\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$
 - (iii) Existence of multiplicative identity : \exists a unique scalar 1 such that

$$\alpha.1 = 1.\alpha = \alpha$$

- (iv) $\forall \alpha \neq 0 \exists$ a scalar denoted by α^{-1} such that $\alpha \cdot \alpha^{-1} = \alpha^{-1} \cdot \alpha = 1$
- (F-3) The sum and the product obey the distributive property :

$$\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$$

Examples Of Fields

- 1. Set of all rational numbers \mathbb{Q} is a field with usual addition and multiplication as the two binary operations.
- 2. Set of all real numbers $\mathbb R$ is a field with usual addition and multiplication as the two binary operations.
- 3. Set of all complex numbers \mathbb{C} is a field with usual addition and multiplication as the two binary operations.
- 4. The set \mathbb{Z}^+ of all positive integers is not a field with the usual addition and multiplication as two binary operations (give all possible reasons).
- 5. The set \mathbb{Z} of all integers is not a field with the usual addition and multiplication. (Give one reason).

§3 EndNotes

References

- Halmos P. R. Finite Dimensional Vector Spaces Springer Verlag, East West Edition (1974).
- Fraleigh J. B. A First Course in Abstract Algebra, Pearson Education Limited, Essex, (2014).

20.x (Created : Jur	eated : June 4, 2020 Printed : June 4, 2020)20	KApoor	
		LICENSE:	CREATIVE COMMONS		NO WARRANTY, IMPLIED OR OTHERWISE	
Open M	EXFile			-	0space.org/node/3593	