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§1 The Frobenius Method

In this method of series solution, for nth order linear ordinary differential equations, one
starts with a trial solution of the form

y(x,c) = Zanx"+c (1)
n=0

The trial solution is substituted in the differential equation Ly = 0and we demand that the
coefficient of each power of x be zero. The resulting equations determine the index ¢ and
the coefficients a,. At first we shall discuss the method by means of examples. Later we
shall discuss a theorem which tell us the conditions under which this method will give rise
to an n linearly independent solutions. The relevant theorem, known as Fuch’s theorem
also tell us the minimum radius of convergence of the solution obtained in the series form.
We shall discuss only second order linear ordinary differential equations. To introduce the
method we take up the Bessel’s equation as an example. The Bessel’s equation is
2 d%y dy 2

2
xw—i-x%—i-(x -9y =0 (2)

Substituting Eq.([[38)in Eq.([I09) we get

[ee] (e @] [e.e]
2 Z an(n+c)(n+c—1)z" 2 4z Z an(n4c)z" e 4 (22 —1?) Z a, " =0 (3)
n=0

n=0 n=0

Rewriting Eq.([II0) as

[ee] o0 [ee] [ee]
Z an(n+c)(n+c—1)z" ¢+ Z an(n+ec)x" ¢+ Z AT 2 Z a, "¢ =0 (4)
n=0

n=0 n=0 n=0
we see that the lowest power of z in the above equation is z¢. Equating the coefficient of
z¢ in Eq.([[II)to zero we get

apc(c — 1) + age — v2ag =0 (5)
ap(c> = %) =0 (6)

Assuming ag # Owe get
A —12=0 (7)

This equation determine the index ¢ and is called the indicial equation. For the present
case the two possible values of are ¢; and ¢y where

cl=—-V,Ccg =V (8)

The details of the method of series solution depend on the roots of the indicial equation.
For the second order differential equations under discussion the following cases arise

CASE-I : The roots of indicial equation are distinct and the difference of the roots is
not an integer.

CASE-II : The roots of indicial equation are equal.

CASE-III: The difference of the roots of indicial equation is a non-zero integer and some
coefficient a,, becomes infinite.

CASE-IV : The difference of the roots of indicial equation is a non-zero integer and some
coefficient a,, becomes indeterminate.

We shall discuss the above four cases by means of separate set of examples. The series
solution for the Bessel’s equation is left as an exercise for the reader.



§2 Case-l :: Difference of Roots of Indicial Equation is not and Integer

EXAMPLE - 1:

In this lecture we shall take up solution of an ordinary differential equation by the method
of series solution. The example to be discussed is such that the indicial equation has two
distinct roots and the difference of the roots is not an integer.
Consider the equation
d’y  dy
dr—= +2—4+y=20 9
dx? dz Y )

Let us assume a solution in the form
o0
y(x,c) = Zan:c"Jrc (10)
n=0
where ¢ and a,, are to be fixed. Substituting Eq.([I7) in the differential Eq.(I10) we get

o o0 o
4x Z an(n+c)(n+c—1)2" 2 2 Z an(n+ )z et 4 Z A"t =0 (11)

n=0 n=0 n=0
or,
o o o
Z 4an(n +c)(n+c— 1)z 4 Z 2a,(n + ¢)z" et 4 Z A" =0 (12)
n=0 n=0 n=0
or,
[e.e] [e.e]
Z 2(n + ¢)(2n + 2¢ — Dayz" ™! + Z Az =0 (13)
n=0 n=0

We now equate coefficients of different powers of x to zero. The minimum power of z in
Eq.[20) is x¢71. So we get

Coeff of 2¢71: ap2¢(2¢ —1)=0 (14)
Coeff of z¢ : a12(c+1)(2c+1)+ap=0 (15)
ao
= — 1
o TS )(2e + 1) (16)
Coeff of T : 4922+ ¢)(4+2c—1)+a; =0 (17)
ai
= — 1
O 02 = T 3 2o+ ) (18)
Coeff of 21 : ap12(m +c+1)2m +2c+1) +a, =0 (19)
1
or Qmi1 = —m (20)

2(m+c+1)2m +2c+1)
The Eq.([IZ])) gives the indicial equation

2¢(2c —1) =0 (21)

or, ¢c=0,



Solution for c = 0

The recurrence relation Eq.(I21) becomes

1
= T oy 2 2m+ 1)
Therefore, a; = —ﬁao
1 1
2T T3
and 1 1
BT 765" T 654.3.2-1°
—_1)m
Thus a,, = ((Qm))' ag
and one solution for, ¢ = 0, is
OO 2 3 m,.m
r oz (=)™
yI(x):chanx"—ao{ 5+E_6'+" + m)! +
~ ! !
Solution for ¢ = %
In this case we have 1
= T om + 3)(2m + 2) ™
Therefore,
1
a1 = —ECLO
B 1 B 1
2T M T 5 432"
1 1
a3 = ———ays = — a
ST 767 7-65-4-3-2°
In general,
—_1)m
(2m+1)!

The second solution is, therefore, given by

& 2 3 m,.m
r T —1)"x
yII:xcE an:c":ao\/i{l——+———+...+L'+...

n=0

The most general solution of the differential equation (I16]) is given by

y(x) = ayi(x) + Byu(z)

(24)

(25)

(26)

(27)

(28)

(35)



83 Case-ll:: Roots of Indicial Equation are equal

In this method we shall take up solution of an ordinary differential equation by the method
of series solution. In this chapter we discuss two examples for which the indicial equation
has two equal roots.

Case II : Example

The first example is the differential equation Ly = 0

dy | dy
1‘@ + % + Yy = 0 (36)
y(z,c) = Z anz" e (37)
n=0
d - n+c—1
%y(az, c) = Z an(n+c)x (38)
n=0
d? >
L oh(w.0) = 3 anln+ )+ = Dot (39
n=0

Substituting Eq.(I09) Eq.([I0)Eq.([III) in the differential equation Eq.(I35]) gives

o0 o o0
x Z an(n+c)(n+c— 1)z 2 4 Z an(n + c)z" et 4 Z A" =0 (40)
n=0 n=0 n=0

Or, [e.e] [ee] [e.e]
Z an(n+c)(n+c—1)z" Tt 4 Z an(n + c)z" el ¢ Z a "t =0 (41)
n=0 n=0 n=0
or,
o0 o0
Z an(n + c)2xn+cfl + Z ananrc -0 (42)
n=0 n=0

Before we start equating the coefficients of different powers of = to zero, we derive a result

for later use (see Eq.([ITT)below).

We split off the n = 0 term from the remaining series in the first term in Eq.(II4]) and
rewrite the L.h.s of Eq.([II4]) as
d*y

dy - G - S
mw—l—%—l-y:aoczxc 1+nz:1an(n+c)2xn+c 1+nz;)anxn+c (43)

In the first summation in the r.h.s. we replace n with m + 1 and sum over m from 0 to
oo; while in the second summation we simply replace nwithm. This gives

Py d N 3
xd—xg + % +y = apc?z ! + mzzoamﬂ(m et 1)%amre mzzoamxm“ (44)
or 00
d*y d -
S = ale 4 Y et U a9

ot



Coming back to Eq.([I4]) we now equate coefficients of different powers of x to zero. The
minimum power of x in Eq.([[Id)is 2°~!. So we get

Coefficient of z°71: apc? = 0 (46)

or, the roots of the indicial equation are coincident and

c=0 (47)
Coeff of 2 :ay(c +1)* +ag =0 (48)
a = —ﬁ (49)
Coeff of ™1+ ap(24¢)* 4+ a1 =0 (50)
oh =Ty Q)S?C +1)2 51)
Coeff of 2T : a,, 11 = _(m—l—aﬁ (52)
This gives "
o= ) e m -1 TP (53)
and hence from (I09])
0 0 e
y(@,e) = %anmnﬂ - nzo(—l)" (c+n)(c+n—1)...(c+1)? (54)

Notice that, if we use Eq.(I20) in Eq.(IIT), one gets that for ¢ # 0 y(z,c) satisfies the
relation

d’y dy 2 1
x@—i—@—i—y:aoc x° (55)
This Eq.([I21) shows that the two solutions of the given differential equation are
dy(x,c
() = 9,0 g and g c) = P00 (56)

c=0

We shall now determine the series for the two solutions in Eq.(I28]). The coefficients a,
can be expressed in terms of gamma functions I'(xz) making use of the property

[(z+41) =2I'(2) (57)
Using Eq.(I29) repeatedly we get, for r < n,

Nz+n+1) = (z+n)'(z+n) (58)
(z+n)(z+n—-—1)I(z+n-1) (59)

= (z+n)z+n—-1)(z4+n—-2)...z+7r)(z+7)

I'(z+n+1)

(z+n)(z+n—-1)...(z+r) = T +7)

(60)



Using Eq.([I32) with z = ¢, r = 1we get
I(c+n+1)

(c+n)c+n—1)...... (c+1)= Tt 1) (61)
Use Eq.(I33) to rewrite Eq.([I26) to get
0 e
y(x,¢) = ag[l(c+ 1) nZ:o(_l)nm (62)
Setting ag[T'(c + 1)) = 1, we get
Vo) =" SV (63)
The two solutions of the given differential equation are
> " > x™
+yi(z) = y(@,0)l = = nzo(—l)"m = 7;)(—1)" (12 (64)
and
(e = 229 (65)

For the second solution the derivative w.r.t. ¢ at ¢ = 0 is needed and can be conveniently
expressed in terms of the I'(x) and the function ¢ (z), where

1 dl(z) _d

Therefore, computing the derivative of m
d 1 1 dl'(z) P(x)
i — 9 — 9 67
GT@P - T@F & TwP o
Differentiating y(z, c) given by Eq.([I00) we get
dy(z,c) - x" - d 1
I\ (& 1 _1 n - (& _1 n - _ -
de v Og””n;( " Tegnrop T ;)( V& Tlerns 1P
(68)
Hence
dy(z, c) - Y(n+1)
= ABYr 2 logz — 23 (=) g" T
wie) = V9| = w2 S0t TS @
In the last step in Eq.([69) we have used Eq.([I04]) to get
1 1 1
de [(c+n+1)% | [C(n+1)P? (n!)?
The most general solution is a linear combination of y;(x) and ya(x)
y(x) = ayi(x) + Bya(x) (71)

Question: In going from Eq.([I34)to Eq.([I00) we have made a choice

1
[Cle+ 1))
How will the solution ¥ change if we had proceed without making this choice ? It can be
verified that the most general form Eq.([7T]) of the solution is not affected by this choice

ag —



84 Case-lll:: Roots Differ by an Integer and Some Coefficient is Infinite

We shall now take up the series solution for differential equations when the roots of the
indicial equation differ by an integer # 0. For such equations two different possibilities
arise.The first possibility, discussed in this lecture is that roots of the indicial equation
differ by an integer and this results in some coefficient becoming infinite. In the other
possibility, to be taken up in the next lecture, is when some coefficient becomes indeter-
minate.

Case-III : Example

An example of the case-I1I is the ordinary differential equation Ly = 0 where

Py | dy
_ 22 J -7 _
Ly = = 702 +xd:c (2x 4+ 1)y (72)
Let -
y(x,c) = Z Azt (73)
n=0
Then we have
d o0
Y@ = > an(n+c)a"te! (74)
n=0
d? =
.0 = anln+ Y n+ e — 1)t (75)
n=0

Substituting in the given differential equation
oo
2 Z an(n+c)(n+c—1)z" 24
n=0

x Z an(n + )z — (22 + 1) Z a,z" =0 (76)
n=0

n=0

Or we have,

o [e.9]
Zan(n—l—c)(n—i-c— Dzt + xZan(n+C)x"+c_1
n=0 n=0

o
— (2z+1) Z a, "¢ =0 (77)
n=0
This can be rearranged as

[e.e] [e.e]
Z an {(n+¢)* =1} 2" -2 Z apz" Tt =0 (78)
n=0 n=0

Before we start equating the coefficients of different powers of x to zero, we derive a result
for (see Eq.(IIT7) below ) for later use. We split off the n = 0 term in the first sum and
write it separately.

ap(c? — 1)zt + Z an {(n+c¢)* =1} 2" -2 Z anx" T =0 (79)



The summation index in the second sum can be redefined from n to r = n + 1, so that
sum over r runs from 0 to co. Thus we get

o0

o
ap(c® — 1)z + Z arp1 {(r+14¢) —1}a"He—2 Z apz" et =0 (80)
r=0 r=0

The left hand side of Eq.([II4) is just Ly(x,c). Eq.(II6) enables us to rewrite Ly(x,c) as
oo

Ly(z,c) = ap(c® — 1)a° + Z arp1 {[(r+1+¢)*—1] —2a,} 2"t =0 (81)
r=0

Eq.([II7) will be needed below, for the moment we get back to Eq.(II4]). The minimum
power of x in Eq.([IT6]) is z¢, and its coefficient is equated to zero to get

ap(c* —1) = 0. (82)

The indicial equation is, therefore, given by ¢ —1 = 0 and the possible values of ¢ are 1.

Equating the coefficients of successive powers z¢t1, 2¢+2 etc. to zero gives
Coefficient of ™1 :  a; [(c+1)* = 1] —2a9 =0 (83)
2
therefore a; = c(c(—z{f)Q) (84)
Coefficient of z¢2 :as[(c 4+ 2)? — 1] — 2a; = 0 (85)
and hence
20,1 2.20,0 (86)
as = =
T et )e+3) " (c+Dlct3)(c+2e
Note that the coefficient as becomes infinite when ¢ = —1. Similarly, the coefficient of 23
equated to zero implies
2@2
therefore a3 =-—"-+—"— 87
ST (et 4)(c+2) (87)
The recurrence relation as obtained from Eq.([I14]) by demanding that the coefficient of
2™+ be zero.
(m+c+1)(m+c—1)ay, — 2a,-1 =0 (88)
20y,
ay, = Am—1 (89)

(m+c+1)(m+c—1)

Thus a3 and all the subsequent coefficients are proportional to as and hence becomes
infinite, for ¢ = —1, due to presence of a factor (¢ + 1) in the denominator of as, see
Eq.(I22). Since the overall constant ag arbitrary, we may select ag = k(¢ + 1) making as
and all the subsequent coefficients finite for both the values of ¢ = £1. With the choice
ap = k(c+ 1) and using the recurrence relation Eq.([I25]) in Eq.(II7) one gets

Ly(z,c) = ao(c® —1)z° = k(c—1)(c+1)%z° (90)

It is apparent from the above equation that for ¢ = —1 we have two linearly independent
solutions given by

dy(z, c)
dc 1

c=

yi1(z) = y(z,c)|._ _; and ya(z) = (91)



It can be explicitly checked that yet another solution, obtained from y(x,c) by setting
¢ = 1, is proportional to the solution y;(x).

We shall now get explicit form of the two solutions Eq.(I27)), Eq.(I20)Eq.([I22]),Eq.([I23)
and Eq.([I25]) give

_ 2ap o — 2.2ap
MO+ 2T 3+ 2)(ct+ e (92)
- 23a0
B e et Bt (et 2t e 53)
and in general
= 2"y (94)

(m+c+1)(m+c)--(c+2)(m+c—1)(m+c—2)---c

Multiplying and dividing Eq.([I30) by [I{c+ 2)]?, the expression for a,, can be easily cast
in the form

2Mapc+ 2)[(c + 2)
Ay, = (95)
m+c+2)I{m + ¢)c(c+ 1)
Writing the series for y(z, ¢), using Eq.([I28]),Eq.([I29]) and Eq.([I31), we obtain
(x c)—axc{l—i- 2 + 2 +
i e =ao @ +2) " (c+ elc+3)(c+2)
2T (c+2)[(c+2) m
. 96
+I’(m+c+2)f’(m+c)c(c+1)x + (96)
Next we use ag = k(c+ 1) and rewrite the above series as
2z 22 12
z,c) =kaS(c+1)+(c+1)x ++ 4+
(<) {( R P TG I AR T
2mT 2)r 2
4D+ . o
L(m+c+2)'(m+ c)c
One solution is obtained by setting ¢ = —1 in Eq.([I33]), which apart from an overall
constant can be written as
0 om L o 2m+1 1
= T ) Y —— 98
() Z(m!)(m—Q)!x Z(m!)(m—2)!x (98)
m=2 m=0
To obtain the second solution we differentiate Eq.([I33]) w.r.t ¢ and set ¢ = —1. This gives
dy(z, c)
99
I (99)
2z 22 12
= klogza®S(c+1)+(c+1 + +oe
& {( )+ )c(c+2) cle+3)(c+2)
2"T(c+2)I'(c+2) ,, n
1‘ ..
T'(m+ c+2)I'(m + c)e)
2 d 2% 12 d  2"T(c+2)I(c+2
Ly A e A 2T d(erD)
clc+2)  dee(e+3)(c+2) de'(m + ¢+ 2)['(m + ¢)c)
(100)

10



Computing the derivative of log a,,, with a,, as in Eq.([I31]) we get

log a,, =log2™k + 2log'(c +2) —logl'(m + ¢+ 2) —logI'(m + ¢) — log ¢

Thus we have and setting ¢ = —1 one gets
1 dap, { 1}
—_— — = 2Y(c+2)=¢Y(c+m+2)—¢Yp(m+c)——
== {er - )—vmro -

= 2y—¢Y(m+1)—y(m—-1)+1

Writing

and defining ¢(0) = 0, and using
P(n) =—y+ ¢(n—1), for n > 1.
Eq.([I02) can be simplified, for m > 2 to give

Bom| = 6m—2) + om) 1
2" [om —2) + glm) ~ 1

m! (m —2)!

c=—1

Substituting back in Eq.(I00) gives the series for the second solution as
yo(z) = =21 (z) log z 4+ 27 A(z)
where A(z) is the series given by

2" [o(m) + dlm —2) 1] ,

—_— —_ 2 DY
Alx) = 1-2z+42"+---+ ml (m — 2]

_ {Lﬂx+ﬁ+“_+ffwwmw+Mm—m—uﬂthn

U (m — 2)!
— m! (m —2)!

}

(101)

(102)

(103)

(104)

(105)

(106)

(107)

The series solution obtained by setting ¢ = 1 in y(z, ¢) of Eq.([I33))is proportional to y;(x).

11



85 Case-1V :: Roots Differ by an Integer and Some Coefficient is Inde-
terminate
In this lecture we shall take up solution of an ordinary differential equation by the method

of series solution. The example to be discussed is such that the difference of the roots of
the indicial equation is an integer and some coefficient becomes indeterminate.

Consider the differential equation

d2y 2

Substituting
o0
y=3 aante (109)
n=0
in Eq.(I35]) we get
[ee] [ee]
Z an(n+c)(n+c—1)z" 2 4 o2 Z anz" =0 (110)
n=0 n=0
or,
o o
Z an(n+c)(n+c—1)z" 2 ¢ Z anz" T =0 (111)
n=0 n=0

The lowest power of z in the right hand side of Eq.([II)) is #°~2. This gives

apc(c—1)=0 (112)

Therefore the two values of ¢ are ¢ = 0 and ¢ = 1. Equating the coefficients of ¢~ 1, 2¢, z¢+1, z¢+2 .

to zero successively gives

arc(c+1)=0 (113)
as(c+1)(c+2)=0 (114)
as(c+2)(c+3)=0 (115)
ag(c+4)(c+3)+ap=0 (116)
The recurrence relation obtained by considering the coefficient of z™¢*2 ig
amya(c+m+4)(c+m+3)+a, =0 (117)

The solution for ¢ = 1 can be constructed as before. For the case ¢ = 0, however, we get

fromEq. (I13])
a1.0 = 0 (118)

Thus a7 cannot be fixed and is indeterminate. In this case we proceed as before except
that we retain both ag and aq as unknown parameters.

12



Case ¢c=0:

Substituting ¢ = 0 from Eq.([II3) to Eq.([I7) we get

a
az=a3=0; a4= —ﬁ (119)
G
a = — 120
T T (m + 4)(m + 3) (120)
Combining Eq.(II9) and Eq.(I20) we see that
aQ:aG:mO---O (121)
and
a3:a7:a11---0 (122)
Also
. _ ! (123)
M= Tyt a8 T oA M2 T s
1 1 1
__r o __1 _ 124
as s gg’s @3 312% (124)
Solving Eq.([I23]) and Eq.([I24]) we get
1 1 1 (125)
a4y = ———ap;, ag = — ap, A =———————a
AT 43" T g ra3t™ T 121187430
1 1 1
as = a1z = (126)

54 T Togpal T 13129854

The series solution in this case contains two parameters, which are not determined by the
recurrence relations, and is given by

y(x) = aoy1(z) + arya(x) (127)
.%'4 1.8 1.12
=1- = - . 12
yi() 34 73478 34781112 T (128)
4 8 12
X X X
—pd1- . 129
y2(@) x{ 15 " 1589 45891213 | } (129)

These two functions y;(z) and y2(x) represent two linearly independent solutions. What
happens when one tries to construct the solution for the second value of ¢ 7 In this case we
recover one of the above two solutions already obtained. This will now be demonstrated
explicitly.

Casec=1:

In this case we get

a] = ag = az = 0 (130)
am
= — 131
Gt = o 1 5) (m + 4) (131)
We therefore get
= Ly as=—lap ap=-—— (132)
M= T g0 A8 T Tt 2T g o8

13



Compare the equations Eq.([[32)) with Eq.(I24]) . We now construct the series
y =x° Z anz" (133)

and get
4 8 12

T x £
B - 134
ya(x) aow{ 15 1589 458901213 | } (34

This solution coincides with y9(x) of Eq.(I29]) except for an overall constant. Hence the
most general solution of the differential equation Eq.(I35]) is given by Eq.([I27])

14



§6 Point at Infinity

For a second order linear differential equation

Tzt @)= +al@)y =0 (135)

sometimes instead of a series solution in powers of x, it may be useful to expand in negative
powers of x:

o0
y(x,c) =z Z anpz” " (136)
n=0

This results on convergence etc. of this type of solutions are conveniently obtained by
changing the independent variable from x to ¢t = 1/x. The differential equation Eq.(I35])
written in terms of ¢ becomes

2
S0+ aly =0 (137
where 5 1 1
p(t) = i t—zp(t)ﬂf(t) = tzQ(l/t) (138)

The behaviour of the series solution at t = 0 gives the answer for the behaviour of the
solution in the inverse powers of x.
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