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§1 The Frobenius Method

In this method of series solution, for nth order linear ordinary differential equations, one
starts with a trial solution of the form

y(x, c) =

∞
∑

n=0

anx
n+c (1)

The trial solution is substituted in the differential equation Ly = 0and we demand that the
coefficient of each power of x be zero. The resulting equations determine the index c and
the coefficients an. At first we shall discuss the method by means of examples. Later we
shall discuss a theorem which tell us the conditions under which this method will give rise
to an n linearly independent solutions. The relevant theorem, known as Fuch’s theorem
also tell us the minimum radius of convergence of the solution obtained in the series form.
We shall discuss only second order linear ordinary differential equations. To introduce the
method we take up the Bessel’s equation as an example. The Bessel’s equation is

x2
d2y

dx2
+ x

dy

dx
+ (x2 − ν2)y = 0 (2)

Substituting Eq.(135)in Eq.(109) we get

x2
∞
∑

n=0

an(n+ c)(n+ c− 1)xn+c−2 + x

∞
∑

n=0

an(n+ c)xn+c−1 + (x2 − ν2)

∞
∑

n=0

anx
n+c = 0 (3)

Rewriting Eq.(110) as

∞
∑

n=0

an(n+ c)(n+ c− 1)xn+c +

∞
∑

n=0

an(n+ c)xn+c +

∞
∑

n=0

anx
n+c+2− ν2

∞
∑

n=0

anx
n+c = 0 (4)

we see that the lowest power of x in the above equation is xc. Equating the coefficient of
xc in Eq.(111)to zero we get

a0c(c − 1) + a0c− ν2a0 = 0 (5)

a0(c
2 − ν2) = 0 (6)

Assuming a0 6= 0we get
c2 − ν2 = 0 (7)

This equation determine the index c and is called the indicial equation. For the present
case the two possible values of are c1 and c2 where

c1 = −ν, c2 = ν (8)

The details of the method of series solution depend on the roots of the indicial equation.
For the second order differential equations under discussion the following cases arise

CASE-I : The roots of indicial equation are distinct and the difference of the roots is
not an integer.

CASE-II : The roots of indicial equation are equal.

CASE-III : The difference of the roots of indicial equation is a non-zero integer and some
coefficient an becomes infinite.

CASE-IV : The difference of the roots of indicial equation is a non-zero integer and some
coefficient an becomes indeterminate.

We shall discuss the above four cases by means of separate set of examples. The series
solution for the Bessel’s equation is left as an exercise for the reader.
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§2 Case-I :: Difference of Roots of Indicial Equation is not and Integer

EXAMPLE - I :

In this lecture we shall take up solution of an ordinary differential equation by the method
of series solution. The example to be discussed is such that the indicial equation has two
distinct roots and the difference of the roots is not an integer.
Consider the equation

4x
d2y

dx2
+ 2

dy

dx
+ y = 0 (9)

Let us assume a solution in the form

y(x, c) =

∞
∑

n=0

anx
n+c (10)

where c and an are to be fixed. Substituting Eq.(117) in the differential Eq.(116) we get

4x

∞
∑

n=0

an(n+ c)(n + c− 1)xn+c−2 + 2

∞
∑

n=0

an(n+ c)xn+c−1 +

∞
∑

n=0

anx
n+c = 0 (11)

or,

∞
∑

n=0

4an(n + c)(n + c− 1)xn+c−1 +

∞
∑

n=0

2an(n+ c)xn+c−1 +

∞
∑

n=0

anx
n+c = 0 (12)

or,
∞
∑

n=0

2(n + c)(2n + 2c− 1)anx
n+c−1 +

∞
∑

n=0

anx
n+c = 0 (13)

We now equate coefficients of different powers of x to zero. The minimum power of x in
Eq.(120) is xc−1. So we get

Coeff of xc−1 : a02c(2c − 1) = 0 (14)

Coeff of xc : a12(c+ 1)(2c + 1) + a0 = 0 (15)

or, a1 = − a0
2(c+ 1)(2c + 1)

(16)

Coeff of xc+1 : a22(2 + c)(4 + 2c− 1) + a1 = 0 (17)

or, a2 = − a1
(2c+ 3)(2c + 4)

(18)

Coeff of xc+m : am+12(m+ c+ 1)(2m+ 2c+ 1) + am = 0 (19)

or am+1 = −am
1

2(m+ c+ 1)(2m + 2c+ 1)
(20)

The Eq.(121) gives the indicial equation

2c(2c − 1) = 0 (21)

or, c = 0,
1

2
(22)
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Solution for c = 0

The recurrence relation Eq.(127) becomes

am+1 = − 1

(2m+ 2)(2m+ 1)
am (23)

Therefore, a1 = − 1

2 · 1a0 (24)

a2 = − 1

4 · 3a1 =
1

4 · 3 · 2 · 1a0 (25)

and

a3 = − 1

6 · 5a2 = − 1

6 · 5 · 4 · 3 · 2 · 1a0 (26)

Thus am =
(−1)m

(2m)!
a0 (27)

and one solution for, c = 0, is

yI(x) = xc
∞
∑

n=0

anx
n = a0

{

1− x

2!
+
x2

4!
− x3

6!
+ . . . +

(−1)mxm

(2m)!
+ . . .

}

(28)

Solution for c = 1
2

In this case we have

am+1 = − 1

(2m+ 3)(2m+ 2)
am (29)

Therefore,

a1 = − 1

3 · 2a0 (30)

a2 = − 1

5 · 4a1 =
1

5 · 4 · 3 · 2a0 (31)

a3 = − 1

7 · 6a2 = − 1

7 · 6 · 5 · 4 · 3 · 2a0 (32)

In general,

am =
(−1)m

(2m+ 1)!
a0 (33)

The second solution is, therefore, given by

yII = xc
∞
∑

n=0

anx
n = a0

√
x

{

1− x

3!
+
x2

5!
− x3

7!
+ . . .+

(−1)mxm

(2m+ 1)!
+ . . .

}

(34)

The most general solution of the differential equation (116) is given by

y(x) = αyI(x) + βyII(x) (35)

4



§3 Case-II:: Roots of Indicial Equation are equal

In this method we shall take up solution of an ordinary differential equation by the method
of series solution. In this chapter we discuss two examples for which the indicial equation
has two equal roots.

Case II : Example

The first example is the differential equation Ly = 0

x
d2y

dx2
+
dy

dx
+ y = 0 (36)

y(x, c) =

∞
∑

n=0

anx
n+c (37)

d

dx
y(x, c) =

∞
∑

n=0

an(n+ c)xn+c−1 (38)

d2

dx2
y(x, c) =

∞
∑

n=0

an(n+ c)(n + c− 1)xn+c−2 (39)

Substituting Eq.(109) Eq.(110)Eq.(111) in the differential equation Eq.(135) gives

x
∞
∑

n=0

an(n + c)(n + c− 1)xn+c−2 +
∞
∑

n=0

an(n+ c)xn+c−1 +
∞
∑

n=0

anx
n+c = 0 (40)

or,
∞
∑

n=0

an(n+ c)(n + c− 1)xn+c−1 +
∞
∑

n=0

an(n+ c)xn+c−1 +
∞
∑

n=0

anx
n+c = 0 (41)

or,
∞
∑

n=0

an(n+ c)2xn+c−1 +

∞
∑

n=0

anx
n+c = 0 (42)

Before we start equating the coefficients of different powers of x to zero, we derive a result
for later use (see Eq.(117)below).

We split off the n = 0 term from the remaining series in the first term in Eq.(114) and
rewrite the l.h.s of Eq.(114) as

x
d2y

dx2
+
dy

dx
+ y = a0c

2xc−1 +

∞
∑

n=1

an(n+ c)2xn+c−1 +

∞
∑

n=0

anx
n+c (43)

In the first summation in the r.h.s. we replace n with m + 1 and sum over m from 0 to
∞; while in the second summation we simply replace nwithm. This gives

x
d2y

dx2
+
dy

dx
+ y = a0c

2xc−1 +
∞
∑

m=0

am+1(m+ c+ 1)2xm+c +
∞
∑

m=0

amx
m+c (44)

or

x
d2y

dx2
+
dy

dx
+ y = a0c

2xc−1 +

∞
∑

m=0

[

am+1(m+ c+ 1)2 + am
]

xm+c (45)
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Coming back to Eq.(114) we now equate coefficients of different powers of x to zero. The
minimum power of x in Eq.(114)is xc−1. So we get

Coefficient of xc−1: a0c
2 = 0 (46)

or, the roots of the indicial equation are coincident and

c = 0 (47)

Coeff of xc :a1(c+ 1)2 + a0 = 0 (48)

a1 = − a0
(c+ 1)2

(49)

Coeff of xc+1 : a2(2 + c)2 + a1 = 0 (50)

or, a2 = − a0
(c+ 2)2(c+ 1)2

(51)

Coeff of xc+m : am+1 = − am
(m+ c+ 1)2

(52)

This gives

am = (−1)m
a0

[(c+m)(c+m− 1) . . . (c+ 1)]2
(53)

and hence from (109)

y(x, c) =

∞
∑

n=0

anx
n+c = a0

∞
∑

n=0

(−1)n
xn+c

[(c+ n)(c+ n− 1) . . . (c+ 1)]2
(54)

Notice that, if we use Eq.(126) in Eq.(117), one gets that for c 6= 0 y(x, c) satisfies the
relation

x
d2y

dx2
+
dy

dx
+ y = a0c

2xc−1 (55)

This Eq.(127) shows that the two solutions of the given differential equation are

yI(x, c) = y(x, c)|
c=0 and yII(x, c) =

dy(x, c)

dc

∣

∣

∣

∣

c=0

(56)

We shall now determine the series for the two solutions in Eq.(128). The coefficients am
can be expressed in terms of gamma functions Γ(x) making use of the property

Γ(z + 1) = zΓ(z) (57)

Using Eq.(129) repeatedly we get, for r < n,

Γ(z + n+ 1) = (z + n)Γ(z + n) (58)

= (z + n)(z + n− 1)Γ(z + n− 1) (59)

= . . . . . .

= (z + n)(z + n− 1)(z + n− 2) . . . (z + r)Γ(z + r)

Or

(z + n)(z + n− 1) . . . (z + r) =
Γ(z + n+ 1)

Γ(z + r)

(60)
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Using Eq.(132) with z = c, r = 1we get

(c+ n)(c+ n− 1) . . . . . . (c+ 1) =
Γ(c+ n+ 1)

Γ(c+ 1)
(61)

Use Eq.(133) to rewrite Eq.(126) to get

y(x, c) = a0[Γ(c+ 1)]2
∞
∑

n=0

(−1)n
xn+c

[Γ(c+ n+ 1)]2
(62)

Setting a0[Γ(c+ 1)]2 = 1, we get

y(x, c) = xc
∞
∑

n=0

(−1)n
xn

[Γ(c+ n+ 1)]2
(63)

The two solutions of the given differential equation are

+ y1(x) = y(x, c)|
c=0 =

∞
∑

n=0

(−1)n
xn

[Γ(n+ 1)]2
=

∞
∑

n=0

(−1)n
xn

(n!)2
(64)

and

y2(x, c) =
dy(x, c)

dc

∣

∣

∣

∣

c=0

(65)

For the second solution the derivative w.r.t. c at c = 0 is needed and can be conveniently
expressed in terms of the Γ(x) and the function ψ(x), where

ψ(x) =
1

Γ(x)

dΓ(x)

dx
=

d

dx
log Γ(x) (66)

Therefore, computing the derivative of 1
[Γ(x)]2

d

dx

1

[Γ(x)]2
= −2

1

[Γ(x)]3
dΓ(x)

dx
= −2

ψ(x)

[Γ(x)]2
(67)

Differentiating y(x, c) given by Eq.(100) we get

dy(x, c)

dc
= xc log x

∞
∑

n=0

(−1)n
xn

[Γ(c+ n+ 1)]2
+ xc

∞
∑

n=0

(−1)n
d

dc

1

[Γ(c+ n+ 1)]2

(68)
Hence

y2(x) =
dy(x, c)

dc

∣

∣

∣

∣

c=0

= y1(x) log x− 2

∞
∑

n=0

(−1)n xn
ψ(n+ 1)

[Γ(n+ 1)]2
(69)

In the last step in Eq.(69) we have used Eq.(104) to get

d

dc

1

[Γ(c+ n+ 1)]2

∣

∣

∣

∣

c=0

= −2
ψ(n+ 1)

[Γ(n+ 1)]2
= −2

ψ(n+ 1)

(n!)2
(70)

The most general solution is a linear combination of y1(x) and y2(x)

y(x) = α y1(x) + β y2(x) (71)

Question: In going from Eq.(134)to Eq.(100) we have made a choice

a0 =
1

[Γ(c+ 1)]2

How will the solution y2 change if we had proceed without making this choice ? It can be
verified that the most general form Eq.(71) of the solution is not affected by this choice
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§4 Case-III:: Roots Differ by an Integer and Some Coefficient is Infinite

We shall now take up the series solution for differential equations when the roots of the
indicial equation differ by an integer 6= 0. For such equations two different possibilities
arise.The first possibility, discussed in this lecture is that roots of the indicial equation
differ by an integer and this results in some coefficient becoming infinite. In the other
possibility, to be taken up in the next lecture, is when some coefficient becomes indeter-
minate.

Case-III : Example

An example of the case-III is the ordinary differential equation Ly = 0 where

Ly = x2
d2y

dx2
+ x

dy

dx
− (2x+ 1)y (72)

Let

y(x, c) =

∞
∑

n=0

anx
n+c (73)

Then we have
d

dx
y(x, c) =

∞
∑

n=0

an(n+ c)xn+c−1 (74)

d2

dx2
y(x, c) =

∞
∑

n=0

an(n+ c)(n + c− 1)xn+c−2 (75)

Substituting in the given differential equation

x2
∞
∑

n=0

an(n+ c)(n + c− 1)xn+c−2+

x

∞
∑

n=0

an(n+ c)xn+c−1 − (2x+ 1)

∞
∑

n=0

anx
n+c = 0 (76)

Or we have,

∞
∑

n=0

an(n+ c)(n + c− 1)xn+c + x

∞
∑

n=0

an(n+ c)xn+c−1

− (2x+ 1)
∞
∑

n=0

anx
n+c = 0 (77)

This can be rearranged as

∞
∑

n=0

an
{

(n + c)2 − 1
}

xn+c − 2
∞
∑

n=0

anx
n+c+1 = 0 (78)

Before we start equating the coefficients of different powers of x to zero, we derive a result
for (see Eq.(117) below ) for later use. We split off the n = 0 term in the first sum and
write it separately.

a0(c
2 − 1)xc +

∞
∑

n=0

an
{

(n+ c)2 − 1
}

xn+c − 2

∞
∑

n=0

anx
n+c+1 = 0 (79)
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The summation index in the second sum can be redefined from n to r = n + 1, so that
sum over r runs from 0 to ∞. Thus we get

a0(c
2 − 1)xc +

∞
∑

r=0

ar+1

{

(r + 1 + c)2 − 1
}

xr+1+c − 2

∞
∑

r=0

arx
r+c+1 = 0 (80)

The left hand side of Eq.(114) is just Ly(x, c). Eq.(116) enables us to rewrite Ly(x, c) as

Ly(x, c) = a0(c
2 − 1)xc +

∞
∑

r=0

ar+1

{

[(r + 1 + c)2 − 1]− 2ar
}

xr+1+c = 0 (81)

Eq.(117) will be needed below, for the moment we get back to Eq.(114). The minimum
power of x in Eq.(116) is xc, and its coefficient is equated to zero to get

a0(c
2 − 1) = 0. (82)

The indicial equation is, therefore, given by c2−1 = 0 and the possible values of c are ±1.
Equating the coefficients of successive powers xc+1, xc+2 etc. to zero gives

Coefficient of xc+1 : a1
[

(c+ 1)2 − 1
]

− 2a0 = 0 (83)

therefore a1 =
2a0

c(c + 2)
(84)

Coefficient of xc+2 :a2[(c+ 2)2 − 1]− 2a1 = 0 (85)

and hence

a2 =
2a1

(c+ 1)(c+ 3)
=

2.2a0
(c+ 1)(c + 3)(c+ 2)c

(86)

Note that the coefficient a2 becomes infinite when c = −1. Similarly, the coefficient of xc+3

equated to zero implies

therefore a3 =
2a2

(c+ 4)(c+ 2)
(87)

The recurrence relation as obtained from Eq.(114) by demanding that the coefficient of
xm+c be zero.

(m+ c+ 1)(m+ c− 1)am − 2am−1 = 0 (88)

am =
2am−1

(m+ c+ 1)(m+ c− 1)
(89)

Thus a3 and all the subsequent coefficients are proportional to a2 and hence becomes
infinite, for c = −1, due to presence of a factor (c + 1) in the denominator of a2, see
Eq.(122). Since the overall constant a0 arbitrary, we may select a0 = k(c + 1) making a2
and all the subsequent coefficients finite for both the values of c = ±1. With the choice
a0 = k(c+ 1) and using the recurrence relation Eq.(125) in Eq.(117) one gets

Ly(x, c) = a0(c
2 − 1)xc = k(c− 1)(c + 1)2xc (90)

It is apparent from the above equation that for c = −1 we have two linearly independent
solutions given by

y1(x) = y(x, c)|
c=−1 and y2(x) =

dy(x, c)

dc

∣

∣

∣

∣

c=−1

(91)
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It can be explicitly checked that yet another solution, obtained from y(x, c) by setting
c = 1, is proportional to the solution y1(x).

We shall now get explicit form of the two solutions Eq.(127), Eq.(120)Eq.(122),Eq.(123)
and Eq.(125) give

a1 =
2a0

(c)(c + 2)
, a2 =

2.2a0
(c+ 3)(c+ 2)(c + 1)c

(92)

a3 =
23a0

(c+ 4)(c+ 3)(c + 2)(c + 2)(c + 1)c
(93)

and in general

am =
2ma0

(m+ c+ 1)(m+ c) · · · (c+ 2)(̇m+ c− 1)(m + c− 2) · · · c
(94)

Multiplying and dividing Eq.(130) by [Γ(c+ 2)]2, the expression for am can be easily cast
in the form

am =
2ma0Γ(c+ 2)Γ(c + 2)

Γ(m+ c+ 2)Γ(m+ c)c(c+ 1)
(95)

Writing the series for y(x, c), using Eq.(128),Eq.(129) and Eq.(131), we obtain

y(x, c) = a0x
c

{

1 +
2x

(c)(c + 2)
+

22 x2

(c+ 1)c(c + 3)(c + 2)
+ · · ·

+
2mΓ(c+ 2)Γ(c + 2)

Γ(m+ c+ 2)Γ(m+ c)c(c+ 1)
xm + · · ·

}

(96)

Next we use a0 = k(c+ 1) and rewrite the above series as

y(x, c) = kxc
{

(c+ 1) + (c+ 1)× 2x

(c)(c + 2)
+ +

22 x2

c(c+ 3)(c + 2)
+ · · ·

+
2mΓ(c+ 2)Γ(c + 2)

Γ(m+ c+ 2)Γ(m+ c)c
xm + · · ·

}

(97)

One solution is obtained by setting c = −1 in Eq.(133), which apart from an overall
constant can be written as

y1(x) =

∞
∑

m=2

2m

(m!)(m− 2)!
xm−1 = 2

∞
∑

m=0

2m+1

(m!)(m− 2)!
xm+1 (98)

To obtain the second solution we differentiate Eq.(133) w.r.t c and set c = −1. This gives

dy(x, c)

dc
(99)

= k log xxc
{

(c+ 1) + (c+ 1)
2x

c(c + 2)
+

22 x2

c(c+ 3)(c + 2)
+ · · ·

· · ·+ 2mΓ(c+ 2)Γ(c + 2)

Γ(m+ c+ 2)Γ(m+ c)c)
xm + · · ·

}

+xc
{

1− 2x

c(c+ 2)
+

d

dc

22 x2

c(c+ 3)(c+ 2)
+ · · ·+ d

dc

2mΓ(c+ 2)Γ(c+ 2)

Γ(m+ c+ 2)Γ(m+ c)c)
xm + · · ·

}

(100)
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Computing the derivative of log am, with am as in Eq.(131) we get

log am = log 2mk + 2 log Γ(c+ 2)− log Γ(m+ c+ 2)− log Γ(m+ c)− log c (101)

Thus we have and setting c = −1 one gets

1

am

dam
dc

∣

∣

∣

∣

c=−1

=

{

2ψ(c+ 2)− ψ(c +m+ 2)− ψ(m+ c)− 1

c

}
∣

∣

∣

∣

c=−1

= −2γ − ψ(m+ 1)− ψ(m− 1) + 1 (102)

Writing

φ(n) = 1 +
1

2
+

1

3
= · · ·+ 1

n
(103)

and defining φ(0) = 0, and using

ψ(n) = −γ + φ(n− 1), for n > 1. (104)

Eq.(102) can be simplified, for m > 2 to give

dam
dc

∣

∣

∣

∣

c=−1

= am [φ(m− 2) + φ(m)− 1] (105)

=
2m [φ(m− 2) + φ(m)− 1]

m! (m− 2)!
(106)

Substituting back in Eq.(100) gives the series for the second solution as

y2(x) = −2y1(x) log x+ x−1∆(x) (107)

where ∆(x) is the series given by

∆(x) = 1− 2x+ x2 + · · ·+ 2m [φ(m) + φ(m− 2)− 1]

m! (m− 2)!
xm + · · ·

=

{

1− 2x+ x2 + · · ·+
∞
∑

m=3

2m [φ(m) + φ(m− 2)− 1]

m! (m− 2)!
xm+1 + · · ·

}

The series solution obtained by setting c = 1 in y(x, c) of Eq.(133)is proportional to y1(x).
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§5 Case-IV :: Roots Differ by an Integer and Some Coefficient is Inde-

terminate

In this lecture we shall take up solution of an ordinary differential equation by the method
of series solution. The example to be discussed is such that the difference of the roots of
the indicial equation is an integer and some coefficient becomes indeterminate.

Consider the differential equation

d2y

dx2
+ x2y = 0 (108)

Substituting

y =
∞
∑

n=0

anx
n+c (109)

in Eq.(135) we get

∞
∑

n=0

an(n+ c)(n + c− 1)xn+c−2 + x2
∞
∑

n=0

anx
n+c = 0 (110)

or,
∞
∑

n=0

an(n + c)(n + c− 1)xn+c−2 +

∞
∑

n=0

anx
n+c+2 = 0 (111)

The lowest power of x in the right hand side of Eq.(111) is xc−2. This gives

a0c(c− 1) = 0 (112)

Therefore the two values of c are c = 0 and c = 1. Equating the coefficients of xc−1, xc, xc+1, xc+2, . . .
to zero successively gives

a1c(c+ 1) = 0 (113)

a2(c+ 1)(c + 2) = 0 (114)

a3(c+ 2)(c + 3) = 0 (115)

a4(c+ 4)(c+ 3) + a0 = 0 (116)

The recurrence relation obtained by considering the coefficient of xm+c+2 is

am+4(c+m+ 4)(c+m+ 3) + am = 0 (117)

The solution for c = 1 can be constructed as before. For the case c = 0, however, we get
fromEq.(113)

a1.0 = 0 (118)

Thus a1 cannot be fixed and is indeterminate. In this case we proceed as before except
that we retain both a0 and a1 as unknown parameters.
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Case c = 0 :

Substituting c = 0 from Eq.(113) to Eq.(117) we get

a2 = a3 = 0; a4 = − a0
4.3

(119)

am+4 = − am
(m+ 4)(m+ 3)

(120)

Combining Eq.(119) and Eq.(120) we see that

a2 = a6 = a10 · · · 0 (121)

and
a3 = a7 = a11 · · · 0 (122)

Also

a4 = − 1

4.3
a0; a8 = − 1

8.7
a4; a12 = − 1

12.11
a8 (123)

a5 = − 1

5.4
a1; a9 = − 1

9.8
a5; a13 = − 1

13.12
a9 (124)

Solving Eq.(123) and Eq.(124) we get

a4 = − 1

4.3
a0; a8 = − 1

8.7.4.3
a0; a12 = − 1

12.11.8.7.4.3
a0 (125)

a5 = − 1

5.4
a1; a9 = − 1

9.8.5.4
a1; a13 = − 1

13.12.9.8.5.4
a1 (126)

The series solution in this case contains two parameters, which are not determined by the
recurrence relations, and is given by

y(x) = a0y1(x) + a1y2(x) (127)

y1(x) = 1− x4

3.4
+

x8

3.4.7.8
− x12

3.4.7.8.11.12
+ · · · (128)

y2(x) = x

{

1− x4

4.5
+

x8

4.5.8.9
− x12

4.5.8.9.12.13
+ · · ·

}

(129)

These two functions y1(x) and y2(x) represent two linearly independent solutions. What
happens when one tries to construct the solution for the second value of c ? In this case we
recover one of the above two solutions already obtained. This will now be demonstrated
explicitly.

Case c = 1 :

In this case we get
a1 = a2 = a3 = 0 (130)

am+4 = − am
(m+ 5)(m+ 4)

(131)

We therefore get

a4 = − 1

5.4
a0; a8 = − 1

9.8
a4; a12 = − 1

13.12
a8 (132)

13



Compare the equations Eq.(132) with Eq.(124) . We now construct the series

y = xc
∑

anx
n (133)

and get

y2(x) = a0x

{

1− x4

4.5
+

x8

4.5.8.9
− x12

4.5.8.9.12.13
+ · · ·

}

(134)

This solution coincides with y2(x) of Eq.(129) except for an overall constant. Hence the
most general solution of the differential equation Eq.(135) is given by Eq.(127)
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§6 Point at Infinity

For a second order linear differential equation

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0 (135)

sometimes instead of a series solution in powers of x, it may be useful to expand in negative
powers of x:

y(x, c) = xc
∞
∑

n=0

anx
−n (136)

This results on convergence etc. of this type of solutions are conveniently obtained by
changing the independent variable from x to t = 1/x. The differential equation Eq.(135)
written in terms of t becomes

d2y

dt2
+ p̃(t)

dy

dt
+ q̃(t)y = 0 (137)

where

p̃(t) =
2

t
− 1

t2
p(t); q̃(t) =

1

t4
q(1/t) (138)

The behaviour of the series solution at t = 0 gives the answer for the behaviour of the
solution in the inverse powers of x.
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