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Unit Overview

Syllabus

Vector algebra Preliminaries: Kronecker delta and LeviCivita symbol; Einstein summation

convention. 123 notation for vector components. Dot and cross products of two vectors

and vector identities.

Prerequisites

Vector algebra; dot and cross products; Triple product; Geometrical representation; Com-

ponents of a vector in a system of coordinate axes; Vector algebra identities; Direction

cosines; Matrix algebra; Determinants and their properties.

Lessons

1. A Quick Review of Vector Algebra

2. Summation Convention, ǫ, δ symbols and All That

References

Following is an incomplete list of reference for reading on introductory and specialized

range of topics in matrices and vector analysis.

1. Shanti Narayan, A Text Book of Matrices, Revised by P. K. Mittal, S. Chand and

Co, Delhi (2010)
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3. Bellman R.,Introduction to Matrix Analysis, Textbook Publishers (2003)

4. Khan Academy :: Introduction to matrices

https://www.khanacademy.org/math/algebra-home/alg-matrices

5. Emma Thomas, Matrices and Determinants

http://www.maths.surrey.ac.uk/explore/emmaspages/option1.html
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Lesson A-1::A Quick Review of Vectors

§0.1 Lesson Overview

Learning Goals

In this lesson, we shall begin with vectors as geometrical objects. A quick review of a few

vector algebra identities will be presented. With a choice of coordinate system, vectors

are described as objects with three components. We will present a result on change in

components of a vector when coordinate axes are changed.

Prerequisites

A first exposure to vector algebra; Dot, cross and triple products. Components of a vector

along coordinate axes.

§0.2 Vectors as Geometrical Objects
⇑

The vectors are introduced geometrical objects having a magnitude and direction. Then

one can define various operations on vectors. These include multiplication by a real num-

ber, addition of two vectors, taking dot and cross products of two vectors.

A large variety of physical quantities, such as displacement, velocity etc., appear as

vectors. The laws of physics are formulated as vector (tensor equation) equations. In order

to be able to make numerical predictions and to compare them with experimental data,

geometric description of vector physical quantities turns out inadequate,if not useless.

While the orbit of a planet around the Sun can be geometrically described as ellipses, but

to use laws of physics to make predictions and detailed numerical comparisons observations

it is essential to introduce a coordinate system and work with the three components of

the position vector.
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Notation & Convention:
We shall use boldface letters, A,B,C.., to denote vectors.
If î, ĵ, k̂ are unit vectors along the coordinate axes, a given vector can be expressed as
a linear combination of these unit vectors along the three axes.

A = Axî+Ay ĵ +Az k̂. (1)

Here Ax, Ay, Az are the components of vectors in chosen set of axes. We will use the

notation ~A = (Ax, Ay, Az) to denote the set of the three components of a vector.

Also, we shall use Ã to denote the the column vector of components of a vector A.

Ã =



Ax

Ay

Az


 . (2)

We will also use notation ~R = (x, y, z) for the components of vector. Frequently the
components will be assembled in a column vector to write

R̃ =



x

y

z


 (3)

§0.3 An Example
⇑̄

??1] ↑

Why This Example? To illustrate use of different notations for vectors.

Let K ′ be a set of axes obtained by carrying out a rotation by and angle α on a set of

coordinate axes K. Find relation between components of position vector of a point w.r.t.

the two sets K and K ′.

Let R denote the position vector of a point P . The notation for the components along

the axes in K and K ′ will be written as

~R = (x, y, z), ~R ′ = (x ′, y ′, z ′) (4)

and

R̃ =



x

y

z


 ; R̃ ′ =



x ′

y ′

z ′


 . (5)

Since the rotation is performed about the Z axis, the Z ′ axis coincides with Z axis and

we have z ′ = z.

However components of R, and also the unit vectors, along X,Y and along X ′, Y ′

axes, will be different.
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We use the notation i, j,k to denote the unit vectors along K axes. The unit vectors

along the K ′ axes will be denoted by i ′, j ′,k ′, with k ′ = k. Thus vector R can be written

in two ways as

R = xi+ yj+ zk (6)

R = x ′i ′ + yj ′ + zk. (7)

Components of R w.r.t. K ′ are obtained by taking its dot product with i ′ and j ′. Thus,

from (6) we get

x ′ = R · i ′ = x(i · i ′) + y(j · i ′) (8)

y ′ = R · j ′ = x(i · j ′) + y(j · j ′). (9)

XY
/

/

X

Y

α

α

Fig. 1 Rotation about Z axis

Various dot products can be read in terms of the angle of rotation α from Fig.1 and we

get

i · i ′ = cosα, j · i ′ = sinα (10)

i · j ′ = − sinα, j · j ′ = cosα. (11)

Substituting the above expressions in Eq.(8)-(9), we get

x ′ = x cosα+ y sinα (12)

y ′ = −x sinα+ y cosα (13)

z ′ = z. (14)

and of course z ′ = z. In the matrix notation we writethis relationship as

R̃ ′ =




cosα sinα 0
− sinα cosα 0

0 0 1


 R̃. (15)
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§0.4 Vector Algebra Identities
⇑

The dot and cross product satisfy the following identities.

~A× ( ~B × ~C) = ( ~A · ~C) ~B − ( ~A · ~B) ~C (16)

| ~A× ~B|2 + ( ~A · ~B)2 = ‖A‖2‖B‖2 (17)

( ~A× ~B) · ( ~C × ~D) = ( ~A · ~C)( ~B · ~D)− ( ~B · ~C)( ~A · ~D) (18)
[
~A× ~B, ~B × ~C, ~C × ~A

]
=

[
~A, ~B, ~C

]2
(19)

And some more

~A× ( ~B × ~C) + ~B × ( ~C × ~A) + ~C × ( ~A× ~B) = 0 (20)

[ ~A, ~B, ~C] ~D = ( ~A · ~D)( ~B × ~C) + ( ~B · ~D)( ~C × ~A) + ( ~C · ~D)( ~A× ~B) (21)

If [ ~A, ~B, ~C] 6= 0, every vector ~X can be represented as

~X = α ~A+ β ~B + γ ~C (22)

where

α =
~X · ~B × ~C
[
~A, ~B, ~C

] ; β =
~X · ~C × ~A
[
~A, ~B, ~C

] ; γ =
~X · ~A× ~D
[
~A, ~B, ~C

] (23)

The area of a parallelogram with sides represented by the vectors ~A, ~B is given by

|| ~A× ~B|| and we have

| ~A× ~B|2 =

∣∣∣∣∣
~A · ~A ~A · ~B
~B · ~A ~B · ~B

∣∣∣∣∣ (24)

The volume V of a parallelopiped with represented by the vectors ~A, ~B and ~C is given

by

V 2 =

∣∣∣∣∣∣∣

~A · ~A ~A · ~B ~A · ~C
~B · ~A ~B · ~B ~B · ~C
~C · ~A ~C · ~B ~C · ~C

∣∣∣∣∣∣∣
(25)

References Wikipedia , Vector Algebra Relations

https://en.wikipedia.org/wiki/Vector_algebra_relations

§0.5 Change of coordinate axes

We know that every vector A can be expressed as linear combination of unit vectors along

the three coordinate axes. The coefficients are called components of the vector. The

components of a given vector will be different w.r.t. different coordinate systems. Here

we present a way of relating the components of a vector w.r.t. two different sets of axes.
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Let us assume that we have two right handed coordinate systems, K,K ′, whose origins

coincide but the axes are orientated differently. The coordinates of a point P as seen in

two frames will be different. We wish to find relation between the components w.r.t. the

two sets of axes.

Define direction cosines

Let i, j,k denote unit vectors along the axes K and l,m,n denote unit vectors along the

new axes. Let the components of unit vectors l,m,n w.r.t. the old axes be written as

~ℓ = (ℓ1, ℓ2, ℓ3); ~m = (m1,m2,m3); ~n = (m1,m2,m3). (26)

Then we have

l = ℓ1i+ ℓ2j+ ℓ3k; m = m1i+m2j+m3k; n = n1i+ n2j+ n3k (27)

Get a vector as linear combinations in the two bases

Let (x, y, z) ≡ ~r and (x ′, y ′, z ′) ≡ ~r ′ denote the components of the position vector
−−→
OP of

P the w.r.t. the frames K,K ′. Thus we have

r = xi+ yj+ zk (28)

= x ′l+ y ′m+ z ′n (29)

Using (27) we get

r = x ′l+ y ′m+ z ′n (30)

= x ′(ℓ1i+ ℓ2j+ ℓ3k) + y ′(m1i+m2j+m3k) + z ′(n1i+ n2j+ n3k) (31)

= (ℓ1x
′ +m1y

′ + n1z
′)i+ (ℓ2x

′ +m2y
′ + n2z

′)j+ (ℓ3x
′ +m3y

′ + n3z
′)k (32)

Comparing the last expression with r = xi+ yj+ zk, we get

x = (ℓ1x
′ +m1y

′ + n1z
′); y = (m1i+m2j+m3k); z = (ℓ3x

′ +m3y
′ + n3z

′) (33)

Thus we get 

x

y

z


 =



ℓ1 m1 n1

ℓ2 m2 n2

ℓ3 m3 n3






x ′

y ′

z ′


 (34)

Get the rotation matrix

Using the fact that vectors l,m,n are pairwise orthogonal unit vectors, it is easy to see

that the inverse relation is given by


x ′

y ′

z ′


 =




ℓ1 ℓ2 ℓ3
m1 m2 m3

n1 n2 n3






x

y

z


 (35)
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We introduce the notation

R =




ℓ1 ℓ2 ℓ3
m1 m2 m3

n1 n2 n3


 , (36)

and also a column vector notation for vectors,

r̃ =



x

y

z


 r̃ ′ =



x ′

y ′

z ′


 . (37)

The transformation equation (35), relating the components of r w.r.t the coordinate frames

K,K ′, takes a compact form

r̃ ′ = R r̃ (38)

The matrix R will be called rotation matrix for change of axes reference frame from K,K ′.

Important:

• When working with only one coordinate system there is no need to distinguish
between A and ~A. These two can be used interchangeably.

• When working with two or more coordinate systems K ′,K ′′, . . ., we use ~A ′, ~A′′

to denotes components w.r.t systems K ′,K ′′, . . ..

• The components w.r.t. different coordinate systems will be collectively written
as

~A ′ = (Ax
′, Ay

′, Az
′); and ~A′′ = (A′′

x, A
′′

y , A
′′

z) (39)

• The vector itself can be written as

A = A ′

xî
′ +A ′

y ĵ +A ′

z k̂ (40)

= A′′

x î
′′ +A′′

y ĵ
′′ +A′′

z k̂
′′ (41)

• Frequently, following matrix notation of assembling the components of a vector
in a column vector turns out to be very convenient. A vector A in the matrix
notation will be denoted by Ã, where

Ã =



Ax

Ay

Az


 (42)

• Finally, the ”1− 2− 3” notation for the components of a vector ~A = (A1, A2, A3)
will also be used in place of ”x-y-z” notation ~A = (Ax, Ay, Az).
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Questions for you

1. Verify that the transpose of matrix R equals the inverse of R, RTR = I and that

detR = 1.

2. Using orthogonality property of the rotation matrix, show that the dot product of

two vectors remains same when computed using the components in two different

coordinate systems. This is expected as the values of length of a vector and angles

between two vectors does not depend upon the choice of coordinate system.

Question for You

[1] Use orthogonality property of K ′ axes to argue that the transpose of matrix R is

its inverse RTR = RRT = I. <<Click for a Hint>>

A matrix having the property is defined to be an orthogonal matrix. The above

property of matrix R means that the rotation matrices are orthogonal matrices.

§0.6 EndNotes

1. For a quick review of vector algebra see Murphy[0] Ch4; Griffiths[0] Ch1; For use of

vectors in Physics see Feynman Lectures Vol-I[0] Ch 11.

2. The matrix R relating components of a vector in two different coordinate systems is

an orthogonal matrix, see Eqs.(34) - (36).

Properties of orthogonal matrices We summarize some important properties of N×

N orthogonal matrices.

It is useful to know that the set of N × N orthogonal matrices obey the following

properties.

1. If O1, O2 are orthogonal matrices, then the product O1O2 is also N dimensional

orthogonal matrix.

2. The multiplication of matrices being associative property, we have O1(O2O3) =

(O1O2)O3) for orthogonal matrices too.

3. The identity matrix is orthogonal matrix.

4. If O is an orthogonal matrix, its inverse matrix O−1 is also orthogonal.

The set of all N × N orthogonal matrices obey all the requirements for a group. This

group is called orthogonal group O(N)in N dimensions. The set of all N ×N orthogonal

matrices with detO = 1 is a group SO(N), known as the special orthogonal group in N

dimensions.
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References Watch this video to get started on definition of groups.
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Lesson A-2 :: Summation Convention and All That

§7 Learning Goals ⇑–§1–§2–§3–⇓

You will learn about Einstein summation convention, Kronecker delta symbol and Levi-

Civita epsilon symbol. Examples of usage of Kronecker delta and Levi-Civita symbols to

vector algebra are presented.

§8 Summation Convention ⇑–§1–§2–§3–⇓

Einstein Summation Convention

We describe the Einstein summation convention and give some examples.

1. Summation convention

If ~x = (x1, x2, x3) is vector, square of its length is given by

|~x|2 =
3∑

i=1

x2i .

We can rewrite it as

|~x|2 =
3∑

i=1

xixi.

In this form the index i is repeated and is summed over all values. The Einstein

summation convention says all repeated indices are automatically summed over all

possible values. With this convention we write

|~x|2 = xixi.

2. Dummy index

The index which is summed over all values is called a dummy index. A dummy index

can be replaced with any other index taking the same set of values. Thus we can

write |~x|2 as xixi, or as xjxj. Obviously the two expressions are equal.

3. Free index must balance

An index which appears only once in an expression is not summed, is called a free

index. Every term of an equation (or an expression) the free indices must balance.

4. A relation having having a free index

If an index appears as a free index in an equation, it is understood, by convention,
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that the hold for all values of the free index. As an example, matrix multiplication

of a column vector u by a matrix, v = Au, is normally written as

vi =

N∑

j=1

Aijuj , i = 1, . . . , N, (43)

With the above convention we will write it as

vi = Aijuj (44)

In the above equation iis a free index. It is understood that the above equation

holds for all values of the free index i.

Kronecker Delta and Levi-Civita Symbols

⇑

Convention In this write up we assume Einstein summation convention for repeated

indices.

Definition 1 The Kronecker delta symbol δij is defined as

δij =

{
1 if i = j

0 if i 6= j.
(45)

Definition 2 The Levi-Civita symbol ǫijk (with three indices) is a completely anti-symmetric

under exchange of any two indices. So for example

ǫijk = −ǫjik; ǫijk = −ǫikj; ǫkij = −ǫkij.

Here the indices ijk take values from 1 to 3.

The symbol ǫijk has only one independent component and we have ǫ123 = 1. All other

components are related to ǫ123 and turn out to be either zero or ±1.

The definition of the Levi-Civita is easily generalized to the case of any number of

indices. So with N indices i1, i2, ..., iN all taking values 1, 2, ..., N , we have the symbol

ǫi1,i2,...iN antisymmetric under exchange of any pair of two indices and ǫ123..N = 1.

)||(Short Examples 1 We explicitly list values of Kronecker delta and epsilon symbols
when the indices run from 1 to 3.

(1a) δ11 = δ22 = δ33 = 1

(1b) δ12 = δ21 = δ23 = δ32 = δ31 = δ13 = 0

(1c) The six non-zero components of epsilon symbol are

ǫ123 = ǫ231 = ǫ312 = 1

ǫ213 = ǫ321 = ǫ132 = −1

(1d) All other components of ǫijk vanish when any two indices coincide. So, for example

ǫ111 = ǫ222 = ǫ333 = 0

ǫ112 = ǫ122 = ǫ133 = ... = 0
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A useful result If fijk is any object which is totally antisymmetric in its indices, then

it must be proportional to the Levi-Civita symbol. Thus

fijk = Cǫijk; and C = f123

Some identities We give some identities of Kronecker delta and the Levi-Civita symbols

for the case when the indices take three values 1,2,3.

δii = 3; ǫijkǫijk = 6 (46)

For the Levi-Civita symbol we have the following identities.

ǫi j k ǫl j k = 2 δil (47)

ǫi j k ǫlmk = ( δil δjm − δim δjl) (48)

ǫi j k ǫl mn =

∣∣∣∣∣∣

δil δim δin
δjl δjm δjn
δkl δkm δkn

∣∣∣∣∣∣
(49)

The determinant of a 3× 3 matrix X has an expression in terms of Levi-Civita symbol.

detX =
1

3!
ǫijkǫℓmnXiℓXjmXkn. (50)

This result generalizes matrices having any dimension.

Examples

Summation convention

)||(Short Examples 2 Let Sij and Aij are respectively symmetric and anti-symmetric un-
der exchange ij and Tij be arbitrary second rank tensor. Then

(2a) SijTij =
1

2
Sij

(
Tij + Tji

)

(2b) AijTij =
1

2
Aij

(
Tij − Tji

)

(2c) SijAij = 0.

Proof of (2a) Let Sij be symmetric under exchange of indices i ↔ j and Tij be arbitrary

tensor of rank 2. Thus we are given Sij = Sji. We will now show that

SijTij =
1

2

(
Sij

(
Tij + Tji

))
.

Let σ denote the left hand side, σ = SijTij Consider

σ = SijTij = SjiTij used given symmetry property of S (51)
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Now replace dummy indices i, j by a new set mn to get

σ = SjiTij = SnmTmn replaced i → m, j → n (52)

= SijTji replaced m → j, n → i (53)

This implies that the 1

2

(
Sij

(
Tij+Tji

))
= σ

2
+ σ

2
= σ . which is the desired result. Proof

of (2b) is written along similar lines. For a proof of (2c), use (2a) or (2b).

Use of ǫ, δ symbols in vector algebra

The use of Kronecker delta and Levi-Civita epsilon symbols for vector algebra and vector

calculus simplifies computations. Here we give a few elementary examples to illustrate

usage of these symbols.

[1] The dot product of two vectors ~A · ~B can be written as

~A · ~B = δjkAjBk (54)

[2] The cross product of two vectors ~C = ~A× ~B can be written as

Ci = ǫijkAjBk (55)

[3] The triple product [ ~A, ~B, ~C] can be represented as

[ ~A, ~B, ~C] = ǫijkAiBjCk (56)

[4] Using the above expression is is easy to see that the cross product of a vector with

itself vanishes. This is seen as follows. Let ~C = ~A× ~A, then

Ci = ǫijk(AjAk). (57)

Here ǫijk is antisymmetric under exchange j ↔ k whereas AjAk is symmetric. Hence

the sum over all jk vanishes.

[5] Vector algebra identities can be used to derive identities for the Kronecker delta and

Levi-Civita epsilon symbols. For example

( ~A× ~B) · ( ~C × ~D) = ( ~A · ~C)( ~B · ~D)− ( ~B · ~C)( ~A · ~D)

implies

ǫijkǫimn = δjmδkn.− δkmδjn

The proof of this result is left as an exercise for the reader.

§9 EndNotes ⇑–§1–§2–§3–⇓

14



1. Food for your thought

(a) Writing out all terms for a 2× 2 matrix A, explicitly verify that

ǫijǫmnAimAjn = 2detA.

where the indices i, j,m, n take values 1 and 2.

(b) For a three by three matrix A show that

detA = ǫijkAi1Aj2Ak3.

2. The discussion of Kronecker δ and summation convention presented here is based on

Woodhouse [0] Examples 3.1-3.6.

3. For introduction to Kronecker delta and Levi Civita Symbol and applications to

vector calculus and electromagnetic theory see, for example

https://arxiv.org/pdf/1406.3060.pdf

4. 0space Link for Levi Civita tensor On 0space.org ;

See also Kronecker Delta function δij and Levi-Civita (Epsilon symbol ǫijk

15

https://arxiv.org/pdf/1406.3060.pdf
http://0space.org/node/3179
http://0space.org/node/3180


Bibliography

16


	Stack Outline
	Quick Review of Vectors
	Lesson Overview
	Vectors as Geometrical Objects
	An Example 
	Vector Algebra Identities
	Change of coordinate axes
	EndNotes


	
	§ Learning Goals
	§ Summation Convention
	§ EndNotes


