CHENNAI MATHEMATICAL INSTITUTE

CLASSICAL MECHANICS I PROBLEM SHEET XII

14th November 2012 date due 21st November 2012

56. A mass m is attached to a massless spring (spring constant K, unstretched length L) and is free to oscillate in a vertical plane about A. Write the Lagrangian and the Hamiltonian of the system. Write both the Euler-Lagrange equation and the Hamilton's equation and show that they are identical.

57. Let the infinitesimal distance in a curved space be given by

$$ds^2 = (g_{ab}(q_1, q_2, \dots, q_N))d\dot{q}_a d\dot{q}_b dt^2 = T^2 dt^2$$

where the summation over a and b is implied and take values 1,2,...,N and t is a parameter specifying the trajectory. Find the geodesic equation by minimising $F(T) = T^2$ - this is the same as minimising T as T^2 is a monotonic function of T. This saves considerable algebra. Show that the geodesic equation is

$$\ddot{q}_p = \frac{1}{2} g_{pa}^{-1} \left[\frac{\partial g_{cd}}{\partial q_a} - \frac{\partial g_{ad}}{\partial q_c} - \frac{\partial g_{ac}}{\partial q_d} \right] d\dot{q}_c d\dot{q}_d$$

(again the summation convention has been used)

58. A particle of mass m moves on a spiral $x_3 = k \theta, \rho = R$ (we are using cylindrical co-ordinates (ρ, θ, x_3) , x_3 being the vertical direction). Find the Hamiltonian and solve the equations of motion.

59. Consider the Lagrangian of a charged particle (mass m , charge q) in the presence of an electric $\vec{E}(\vec{r},t)$ and a magnetic field $\vec{B}(\vec{r},t)$. The Lagrangian for the particle is given by

$$L \; = \; \frac{m \, \vec{r} . \vec{r}}{2} \; + \; q(-\phi(\vec{r},t) \; + \vec{A}(\vec{r},t))$$

where

$$\vec{E}(\vec{r},t) = -\vec{\nabla} \phi(\vec{r},t) - \frac{\partial \vec{A}(\vec{r},t)}{\partial t}$$

and

$$\vec{B}(\vec{r},t) = \vec{\nabla} \times \vec{A}(\vec{r},t)$$

Show that this leads to the correct force law

$$m\frac{d^2\vec{r}}{dt^2} = q(\vec{E}(\vec{r},t) + \vec{r} \times \vec{B}(\vec{r},t))$$

where $\vec{v} = \frac{d\vec{r}}{dt}$ is the velocity of the particle.

60. Consider a particle of mass m moving in a plane under the central force

$$F(r)\hat{r} = (-\frac{k}{r^2} + \frac{k'}{r^3})\hat{r}$$

with k > 0.

- (a) Write the Lagrangian in terms of polar coordinates (r, θ) .
- (b) Find the constants of motion.
- (c) Assume the angular momentum l^2 is greater than -m k'. Obtain an equation for u = 1/r as a function of θ . Get the general solution for r as a function of θ .