# CHENNAI MATHEMATICAL INSTITUTE CLASSICAL MECHANICS I <br> PROBLEM SHEET XII 

14th November 2012
date due 21st November 2012

56. A mass m is attached to a massless spring ( spring constant K , unstretched length L ) and is free to oscillate in a vertical plane about A. Write the Lagrangian and the Hamiltonian of the system. Write both the Euler-Lagrange equation and the Hamilton's equation and show that they are identical.
57. Let the infinitesimal distance in a curved space be given by

$$
d s^{2}=\left(g_{a b}\left(q_{1}, q_{2}, \ldots, q_{N}\right)\right) d \dot{q}_{a} d \dot{q}_{b} d t^{2}=T^{2} d t^{2}
$$

where the summation over a and b is implied and take values $1,2, \ldots, \mathrm{~N}$ and $t$ is a parameter specifying the trajectory. Find the geodesic equation by minimising $F(T)=T^{2}$ - this is the same as minimising $T$ as $T^{2}$ is a monotonic function of $T$. This saves considerable algebra. Show that the geodesic equation is

$$
\ddot{q}_{p}=\frac{1}{2} g_{p a}^{-1}\left[\frac{\partial g_{c d}}{\partial q_{a}}-\frac{\partial g_{a d}}{\partial q_{c}}-\frac{\partial g_{a c}}{\partial q_{d}}\right] d \dot{q}_{c} d \dot{q}_{d}
$$

(again the summation convention has been used)
58. A particle of mass m moves on a spiral $x_{3}=k \theta, \rho=R$ ( we are using cylindrical co-ordinates $\left(\rho, \theta, x_{3}\right), x_{3}$ being the vertical direction).Find the Hamiltonian and solve the equations of motion.
59. Consider the Lagrangian of a charged particle ( mass m, charge q) in the presence of an electric $\vec{E}(\vec{r}, t)$ and a magnetic field $\vec{B}(\vec{r}, t)$. The Lagrangian for the particle is given by

$$
L=\frac{m \overrightarrow{\dot{r}} \cdot \overrightarrow{\dot{r}}}{2}+q(-\phi(\vec{r}, t)+\vec{A}(\overrightarrow{\vec{r}}, t))
$$

where

$$
\vec{E}(\vec{r}, t)=-\vec{\nabla} \phi(\vec{r}, t)-\frac{\partial \vec{A}(\vec{r}, t)}{\partial t}
$$

and

$$
\vec{B}(\vec{r}, t)=\vec{\nabla} \times \vec{A}(\vec{r}, t)
$$

Show that this leads to the correct force law

$$
m \frac{d^{2} \vec{r}}{d t^{2}}=q(\vec{E}(\vec{r}, t)+\overrightarrow{\dot{r}} \times \vec{B}(\vec{r}, t))
$$

where $\vec{v}=\frac{d \vec{r}}{d t}$ is the velocity of the particle.
60. Consider a particle of mass m moving in a plane under the central force

$$
F(r) \hat{r}=\left(-\frac{k}{r^{2}}+\frac{k^{\prime}}{r^{3}}\right) \hat{r}
$$

with $k>0$.
(a) Write the Lagrangian in terms of polar coordinates $(r, \theta)$.
(b) Find the constants of motion.
(c) Assume the angular momentum $l^{2}$ is greater than $-m k^{\prime}$. Obtain an equation for $u=1 / r$ as a function of $\theta$. Get the general solution for $r$ as a function of $\theta$.

