# CHENNAI MATHEMATICAL INSTITUTE CLASSICAL MECHANICS I PROBLEM SHEET VIII 

10th October 2012
date due 22nd October 2012
36. A projectile is fired vertically up with an initial velocity $\vec{U}_{0}=U_{0} \hat{\epsilon}_{3}$ from a town located at latitude $\lambda$. Find the place it will come back to the ground taking the earths rotation into account. ( East is along $\hat{\epsilon}_{1}$ and north along $\hat{\epsilon}_{2}$.
37. A merry-go-round starts from rest and constantly accelerates at $\alpha$ revolutions per second per second. a person is siting at a distance of $R$ metres from the axis of rotation and is holding a mass $M$ kilograms. Calculate the force ( vector!) the person must exert on the mass after time $t$. The person's co-ordinates at $t=0$ is $R \hat{\epsilon}_{1}$ ( in the ground frame) and the motion is counterclock-wise as seen from above.
38. A small body is placed on an incline which is pointed along the southern - northern direction. Find the angle of inclination below which the body will slide up the plane neglecting friction. Assume the incline is located at latitude $\lambda$.

39. A particle of mass $m$ is moving frictionlessly along a circular slot OPBC of radius $R$. The slot is made on a disk ( centre $O$ ) which is moving with a uniform angular velocity $\omega$ It starts from rest when the $\angle O A P=\theta=$ 0 ( that is from $O$ ).
(a) Find the force exerted by the slot on the particle as a function of $\theta$.
(b) Find the speed $u$ of the particle relative to the slot just as it reaches C
40. Consider a particle having an initial velocity $\vec{V}_{0}$ ( say a bullet being fired from the earth's surface) at a latitude $\lambda$. Assuming the rotation of the is constant $\left(\frac{d \vec{\Omega}}{d t}=0\right)$ we have the equation for the motion of the particle is given by (in the rotating frame of the earth)

$$
\frac{d^{2} \vec{r}}{d t^{2}}=-2\left(\vec{\Omega} \times \frac{d \vec{r}}{d t}\right)+\vec{g}_{e f f} \quad \text { Equation(A) }
$$

where

$$
\vec{g}_{e f f}=\vec{g}-\vec{\Omega} \times(\vec{\Omega} \times \vec{r})
$$

(a) Show that in the rotating frame ( show $\left.-\vec{\nabla} V_{e f f}=m \vec{g}_{e f f}\right)$, where $V_{e f f}$ is given by

$$
V_{e f f}=V-\frac{m}{2}(\vec{\Omega} \times \vec{r}) \cdot(\vec{\Omega} \times \vec{r})
$$

and $V=-m \vec{g} \cdot \vec{r}$.
(b) Show that
$\vec{r}(t)+\vec{r}(t=0)+\vec{v}(t=0) t+\frac{\vec{g}_{e f f}+2(\vec{v}(t=0) \times \vec{\Omega}) t^{2}}{2}+\frac{1}{3}\left(\vec{g}_{e f f} \times \vec{\Omega}\right) t^{3}$
upto order $g \vec{\Omega} t^{3}$.
NOTE: If we assume $\vec{g}_{\text {eff }}$ is constant, Equation $(A)$ can be solved exactly. The answer is

$$
\begin{aligned}
\vec{r}(t)= & \vec{r}(t=0)+\vec{v}(t=0) t+\frac{\vec{g}_{e f f} t^{2}}{2}+\frac{(\cos (2 \Omega \mathrm{t})-1)}{2 \Omega^{2}}\left(\vec{\Omega} \times \vec{v}_{0}\right) \\
& -\frac{1-2 \Omega^{2} t^{2}-\cos (2 \Omega \mathrm{t})}{4 \Omega^{4}}\left[\vec{\Omega} \times\left(\vec{\Omega} \times \vec{g}_{e f f}\right)\right] \\
& -\frac{2 \Omega t-\sin (2 \Omega \mathrm{t})}{2 \Omega^{3}}\left[\frac{1}{2}\left(\vec{\Omega} \times \vec{g}_{e f f}\right)-\vec{\Omega} \times(\vec{\Omega} \times \vec{v}(t=0)]\right.
\end{aligned}
$$

Try and get it ( not for submission ) Will be happy to discuss with you on how to obtain this expression.

