CHENNAI MATHEMATICAL INSTITUTE CLASSICAL MECHANICS I
 PROBLEM SHEET IV

3rd September 2012
date due 10th September 2012
16. Consider an undamped simple harmonic oscillator and trace the trajectory of a point A with initial conditions $x(t=0)=A ; p(t=0)==0$ in phase space. Choose three neighbouring points in phase space and show that the area of the triangle in phase space is independent of time.
17. Consider the motion of a particle of mass M whose motion is given by

$$
M \frac{d^{2} z}{d t^{2}}+\lambda \frac{d z}{d t}=m g
$$

Choose an appropriate initial condition for the motion of the particle and trace it's trajectory in phase space. Choosing three neighbouring points at time $t=0$ and find the area of the triangle in phase space and show it is not independent of time.
18. Draw the phase space plot of a few trajectories for a particle moving under the potential

$$
V(x)=-a x+b x^{3} a, b>0
$$

You need not solve the equation of motion. Draw the potential and use physical arguments to get the trajectories for different initial conditions. When will the trajectory be closed ?
19. Consider the motion of a particle described by $\vec{r}(t)$. Find the velocity and acceleration vectors in spherical polar coordinates (r, θ, ϕ) along $(\hat{r}, \hat{\theta}, \hat{\phi})$.
20. A pendulum has a period of one second in vacuum. When placed in a resistive medium (resistance is proportional to the velocity), it is observed that the amplitude on each swing becomes half that of the previous swing. What is it's new period?

