CHENNAI MATHEMATICAL INSTITUTE CLASSICAL MECHANICS I
 PROBLEM SHEET III

27th August 2012
date due 3rd September
August 2012
11. An electron moving with an intital velocity enters an electric field $E(t) \hat{\epsilon}_{1}$ with a velocity $V_{0} \cap \epsilon_{1}$. The acceleration is given by $\vec{a}=e E(t) \hat{\epsilon}_{1} / m$, where m is the mass of the electron. The magnitude of the electric field is given by

$$
\begin{gathered}
E(t)=0 \text { for } t<0 ; E(t)=\frac{E_{0} t}{\tau} \text { for } 0<t<\tau \\
E(t)=\frac{E_{0}}{\tau}(t-\tau) \text { for } \tau<t<2 \tau \\
E(t+2 \tau)=E(t) t>0
\end{gathered}
$$

Find the distance travelled in time $n \tau, n$ being an integer..
12. Consider a damped harmonic oscillator described by

$$
m \frac{d^{2} x}{d t^{2}}+\lambda \frac{d x}{d t}+k x=0
$$

with $x(t=0)=A$ and $\left.\frac{d x}{d t}\right|_{t=0}=0$. Calclate the average value of the total energy $<E>_{n T}$ over a cycle $n T \leq t \leq(n+1) T$, after n cycles. T is the time period. Use the result to show

$$
<E>_{n T}=<E>_{0} e^{-2 \gamma n T} \text { for } \gamma \ll\left(\frac{k}{m}\right)^{1 / 2}
$$

where $\gamma=\lambda /(2 m)$.
13. Find the equilibrium position and the frequency of small oscillations about the equilibrium position for the potential

$$
V(x)=-\frac{a}{x^{6}}+\frac{b}{x^{12}}
$$

where a, b are positive constants.
14. The Seismograph: This instrument is used in recording disturbances within the earth, such as those created in earthquakes. The instrument is a spring mass system with a resistance term proportional to the velocity. See figure

Let $y(t)$ be the displacement of the platform with respect O, origin in an inertial frame. $x(t)$ is the displacement of the mass m with respect to the platform. If $y(t)=A \cos (\Omega \mathrm{t})$ show that

$$
x(t)=\frac{m g}{k}+L+\frac{A \cos (\Omega \mathrm{t}+\phi) \Omega^{2}}{\left(\omega^{2}\left[\left(1-\frac{\Omega^{2}}{\omega^{2}}\right)^{2}+\frac{4 \gamma^{2} \Omega^{2}}{\omega^{4}}\right]\right)^{1 / 2}}
$$

where

$$
\tan (\phi)=\frac{2 \gamma \Omega}{\Omega^{2}-\omega^{2}}
$$

L, k is the natural length of the spring (massless) and the spring constant respectively, $\omega^{2}=k / m$. If the spring is soft

$$
\frac{\omega}{\Omega} \rightarrow 0
$$

, show that when $\gamma / \Omega \ll 1$

$$
x(t)=\frac{m g}{k}+L A \cos (\Omega \mathrm{t}+\phi)
$$

Thus

$$
\eta=x(t)-L-\frac{m g}{k} \propto A
$$

the amplitude of the forced oscillation which is what the Seismograph measures.

Further if $\frac{\omega}{\Omega} \gg 1, \eta \propto A \Omega^{2}$ which measures the acceleration fo the platform. Thsi is the principle of the accelerometers used in aircrafts.
15. Consider a mass m moving under a simple harmonic force (force constant $k=m \omega^{2}$) with dry friction (Force of friction $=$ Normal reaction X coeffficient of friction). Taking the normal reaction as $m g$ and μ as the coefficient of friction discuss the motion. Assume an initial state at $t=0$ as $x(0)=A ; \frac{d x}{d t}(0)=0$. Consider A in the range $0.5 \mu \mathrm{mg} / k$ to $2.5 \mu \mathrm{mg} / \mathrm{k}$.

