Question: Approaching the problem of electric field for a uniformly charged sphere in two different ways, find the value of the integral

$$
\begin{equation*}
\overrightarrow{\mathcal{E}}=\frac{1}{4 \pi \epsilon_{0}} \iiint d^{3} r^{\prime} \frac{\left(\vec{r}-\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}} \tag{1}
\end{equation*}
$$

© Solution:

Method 1:

A charged sphere has radius R and centre at the origin and having spherically symmetric charge distribution ρ. The electric field for the sphere by at a point vecr can be computed by using Gauss law and is given by

$$
\vec{E}= \begin{cases}\frac{Q(r)}{4 \pi \epsilon_{0}} \vec{r}, & \text { if } r>R \tag{2}\\ \frac{Q(r)}{4 \pi \epsilon_{0}} \frac{\vec{r}}{r^{3}}, & \text { if } r \leq R\end{cases}
$$

where $Q(r)$ is the total charge inside a sphere of radius and is

$$
Q(r)=\int_{0}^{r} \rho(r) 4 \pi r^{2} d r
$$

In case of uniform charge density, $\rho(r)$ independent of r, the above result for the electric field reduces to

$$
\vec{E}= \begin{cases}\frac{\rho \vec{r}}{3 \epsilon_{0}} & \text { if }, r<R \tag{3}\\ \frac{\rho \vec{r}}{3 \epsilon_{0}} \times \frac{R^{3}}{r^{3}}, & \text { if } r<R\end{cases}
$$

On the other hand the Coulomb's law with superposition principle give the electric field as

$$
\begin{equation*}
\vec{E}=\frac{1}{4 \pi \epsilon_{0}} \iiint d^{3} r^{\prime} \rho \frac{\left(\vec{r}-\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}}=\frac{\rho}{4 \pi \epsilon_{0}} \iiint d^{3} r^{\prime} \frac{\left(\vec{r}-\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}} \tag{4}
\end{equation*}
$$

for the case of uniformly charged sphere.
Equating the electric field answers from (3) and (4) and canceling ρ we get result

$$
\frac{1}{4 \pi \epsilon_{0}} \iiint d^{3} r^{\prime} \frac{\left(\vec{r}-\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}} .= \begin{cases}\frac{\vec{r}}{3 \epsilon_{0}}, & \text { if } r<R \tag{5}\\ \frac{\vec{r}}{3 \epsilon_{0}} \times \frac{R^{3}}{r^{3}}, & \text { if } r<R\end{cases}
$$

Method 2:

This method makes use of generating function of Legendre polynomials

$$
\begin{equation*}
\frac{1}{\left(1-2 x t+t^{2}\right)^{1 / 2}}=\sum_{0}^{\infty} t^{n} P_{n}(x) \tag{6}
\end{equation*}
$$

We first note that the

$$
\begin{equation*}
\frac{\vec{r}-\vec{r}^{\prime}}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}}=-\nabla \frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|} \tag{7}
\end{equation*}
$$

Therefore required integral can be rewritten as

$$
\begin{align*}
\iiint d^{3} r^{\prime} \frac{\left(\vec{r}-\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}} & =-\nabla \iiint d^{3} r^{\prime} \frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}} \equiv-\nabla f(r) \tag{8}\\
\text { where } f(r) & =\iiint d^{3} r^{\prime} \frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|} \tag{9}
\end{align*}
$$

and the integral is to be evaluated over a sphere of radius R. because the term with \vec{r}^{\prime} in the numerator will vanish when averaged over all directions. Next we consider the two cases when (i) $r>R$ (ii) $r<R$ and use the generating function to expand $1 /\left|\vec{r}-\vec{r}^{\prime}\right|$ as follows

$$
\begin{align*}
\frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|} & =\frac{1}{r} \sum_{n}\left(\frac{r^{\prime}}{r}\right)^{n} P_{n}(\cos \theta), & & \text { if } r>r^{\prime} \tag{10}\\
& =\frac{1}{r^{\prime}} \sum_{n}\left(\frac{r}{r^{\prime}}\right)^{n} P_{n}(\cos \theta) & & \text { if } r<r^{\prime} \tag{11}
\end{align*}
$$

- All terms involving Legendre polynomials $P_{n}(\cos \theta), n \neq 0$ vanish due to orthogonality property of Legendre polynomials. Thus we get

$$
\begin{equation*}
f(r)=\int d \Omega \int_{0}^{R} \frac{r^{\prime^{2}}}{r}=\frac{4 \pi R^{3}}{3 r} \tag{12}
\end{equation*}
$$

Substituting the above value in (8) we get the required integral

$$
\begin{equation*}
\frac{1}{4 \pi \epsilon_{0}} \iiint d^{3} r^{\prime} \frac{\left(\vec{r}-\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}}=-\frac{1}{4 \pi \epsilon_{0}} \nabla\left(\frac{4 \pi R^{3}}{3 r}\right)=\frac{1}{3 \epsilon_{0}} \frac{R^{3}}{r^{3}} . \tag{13}
\end{equation*}
$$

Case (ii):
In this case also only the first term survives in the expansion in Legendre polynomials. However, the radial expansion needs to be broken up as a sum
of integral over ranges $\left(0<r^{\prime}<r\right)$ and $\left(r<r^{\prime}<R\right)$. Using appropriate expression from (10) and (11), we get

$$
\begin{align*}
f(r) & =4 \pi\left[\int_{0}^{r}(1 / r) r^{\prime 2} d r^{\prime}+\int_{r}^{R}\left(1 / r^{\prime}\right) r^{\prime 2} d r^{\prime}\right] \tag{14}\\
& =4 \pi\left[\frac{r^{2}}{3}+\frac{R^{2}-r^{2}}{2}\right]=(4 \pi)\left(\frac{R^{2}}{2}-\frac{r^{2}}{6}\right) \tag{15}
\end{align*}
$$

Taking gradient of $f(r)$, (8) gives the final answer as

$$
\begin{equation*}
\frac{1}{4 \pi \epsilon_{0}} \iiint d^{3} r^{\prime} \frac{\left(\vec{r}-\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}}=\frac{\vec{r}}{3 \epsilon_{0}} . \tag{16}
\end{equation*}
$$

