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Question: Approaching the problem of electric field for a uniformly charged

sphere in two different ways, find the value of the integral

47T€0 jjj dr /F—T/|3 (1)

® Solution:
Method 1:
A charged sphere has radius R and centre at the origin and having spherically
symmetric charge distribution p. The electric field for the sphere by at a

point veer can be computed by using Gauss law and is given by

Q(r) -

T, ifr >R,
4meq

Q(r) ™

dmeg 37

E =
if r <R.

where Q(r) is the total charge inside a sphere of radius and is

Q(r) = /Or p(r) 4mr? dr.

In case of uniform charge density, p(r) independent of r, the above result
for the electric field reduces to
pr

3 if ,r <R,
E=q0 (3)
p7™  R?
3TXT—3, 1fT<R
0

On the other hand the Coulomb’s law with superposition principle give the
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for the case of uniformly charged sphere.

electric field as

Equating the electric field answers from (B]) and (] and canceling p we

get result
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Method 2:

This method makes use of generating function of Legendre polynomials
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We first note that the
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Therefore required integral can be rewritten as
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and the integral is to be evaluated over a sphere of radius R. because the

where f(r)

term with 7/in the numerator will vanish when averaged over all directions.
Next we consider the two cases when (i) r > R (ii) » < R and use the

generating function to expand 1/|7 — 7’| as follows
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. All terms involving Legendre polynomials P, (cos),n # 0 vanish due to
orthogonality property of Legendre polynomials. Thus we get
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Substituting the above value in (§)) we get the required integral
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Case (ii):
In this case also only the first term survives in the expansion in Legendre

polynomials. However, the radial expansion needs to be broken up as a sum



of integral over ranges (0 < r’ < r) and (r < r’ < R). Using appropriate
expression from (I0) and ([III), we get
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Taking gradient of f(r), (8) gives the final answer as
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