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§1 Introduction

The Schrodinger equation in one dimension is a second order differential equation. Hence one needs
two conditions on the solution in order to fix the constants of integration. The overall normalization
of the solution carries no physical interpretation. Hence only condition need to be supplied. The
condition imposed will, in general, depend on the physical interpretation of the solution expected.

So for example for bound states we require that the solution vanishes at infinity. For continuous
energy solutions, relevant for transmission through a barrier, the boundary condition on solution
reflects a physical requirement.

Also when the potential is discontinuous we need to supply conditions to be imposed on the solution
at the points of discontinuities of the potential. The requirement to be imposed on the solution will
depend on the type of discontinuity in the potential and is determined by the differential equation
itself.

Some common potentials

Potential problems in one dimension, discussed in every text book, are

• Infinite well or particle in a box

• Finite well or a square well

• Harmonic Oscillator

• Delta function potential

Before coming to solutions of these potentials, we will first discuss relevance of these potentials for
physical systems.
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Why these potentials?

The above mentioned potentials provide simple models for many important physical situations.
So, for example, gas molecules confined in a rectangular box are adequately described by a three

dimensional infinite well.
The nuclear forces between a neutron and proton are short range and attractive and square well

potential provides a first, simple model for the nuclear forces.
The harmonic oscillator potential describes a normal mode of vibration of a molecule, and along

with use of symmetries of the problem, gives important information about spectra of molecules.
The delta function potential is a useful approximation for zero range forces. For example, in the

well known Kronig Penny model the potential experienced by an electron in a crystal is approximated
by a delta function potential at each lattice site. This model in one dimension can be solved exactly
and one can explicitly see the band structure arising due to periodicity of the problem.

These potential problems and other exactly solvable models provide testing grounds for approxi-
mation schemes.

We will also discuss mathematical and physical requirements on the solutions that are to be
imposed in order to solve the Schrödinger equation.

For example, in many situations the solutions and their first derivatives turn out to be continuous
and this is a mathematical requirement that must be imposed to solve the problem.

§2 Acceptable solutions

There are physical and mathematical requirements on acceptable solutions of the Schrödinger equation.
Though we say that the states of a system are represented by square integrable functions, in an
introductory course all text books, and so do we in this course, accept and work with solutions which
are not square integrable. So one might ask what are the requirements on acceptable solutions. For
physical reasons, we are interested in eigenvalue problem. For energy eigenvalues we need solutions of
the Schrödinger equation

[ p2

2m
+ V (x)

]

Ψ(x) = EΨ(x). (1)

The collective, text book, wisdom is that 1

• The wave function should not blow up at any point. The absolute square of wave functions
blowing up at any point does not have a consistent physical interpretation of probability density
and hence are rejected.

• For bound states correspond to the discrete energies and corresponding wave function should
become zero at large distances.

• The continuous energy solutions describe unbounded motion and will be needed to describe
scattering problems. These solutions are not square integrable but one can extract physical
quantities without going into rigorous mathematical details.

• It must be emphasised that use of non-square integrable functions does lead to occasional prob-
lems which are usually bypassed in a first treatment meant for beginners.

• So for continuous energies the wave functions describing free particle at large distances are taken
as physically acceptable for potentials which become constant at large distances. So for example,
in one dimension, wave function behaving like a free free particle sin kx, cos kx, exp(±ikx) will
be acceptable.

1T&C apply
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• A mathematically rigorous treatment requires a greater amount of mathematical maturity and
is to be reserved for advanced courses in quantum mechanics.

§3 Matching conditions on solution of the Schrödinger equation

In addition to boundary conditions at infinity, we need to pay attention to requirements on the
acceptable solutions at finite values of x. These requirements follow from the form of the potential in
the Schrödinger equation.

Consider the Schrödinger equation for a particle in a potential V (x) is

−
~
2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x). (2)

In cases when the potential is a continuous function of x, or has a finite discontinuity, the solution
and its first derivative will be continuous.

When the potential has an infinite discontinuity at a point, as is the case for infinite well, the
correct boundary condition is to be derived using a limiting procedure. We first take the discontinuity
to be finite and obtain the solution and then let the discontinuity go to infinity.

An example commonly discussed in almost all text books is Dirac delta function potential V (x) =
−gδ(x). It is singular at x = 0 and the correct matching condition on the solution, at x = 0, will be
derived by integrating the Schrodinger equation.

So in all cases the matching condition on the solution is to be derived from the differential equation
itself.

§4 Matching condition at a point of an infinite jump in potential

Consider a potential which is infinite for negative x and is a continuous function of x for positive x.
To derive boundary condition applicable at x = 0 we consider it as a limiting case of the potential
having a value V0 for x < 0. The solution of the Schrödinger equation

−
~
2

2m

d2u(x)

dx2
+ V (x)u(x) = Eu(x). (3)

in the region x < 0 is easy to write down and we have

uII(x) = A1 exp(−αx) +A2 exp(αx). (4)

where α2 = 2m(V0−E)
~2

. Let the solution for x > 0 be denoted by uII(x)
Next we demand that the solution u(x) should not blow up as x→ ∞. This requires A2 = 0. This

gives

u(x) =

{

A exp(αx) x < 0

uII(x) x > 0
. (5)

Also as explained above the solution and its first derivative are required to be continuous at x = 0.
This gives

uII(0) = A,
duII(x)

dx

∣

∣

∣

x=0
= αA. (6)

In the limit V0 → ∞, α → ∞ and hence A must go to zero, (otherwise ??) in such a way that
the product αA remains finite. This finite constant value is undermined and we get the matching
condition at x = 0 as

uII(0) = 0,
duII(x)

dx

∣

∣

∣

x=0
= undetermined. (7)
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Q/S:= Can we not require that the undetermined constant be zero?

A/T:= No. The only solution of the Schrödinger equation with initial conditions

u(x)|x=0 = 0,
du(x)

dx

∣

∣

∣

x=0
= 0. (8)

for x = 0 will be the trivial solution u(x) = 0 for all x. Remember null vector does not represent any
physical state in quantum mechanics. Therefore, the required solution will be

u(x) = 0 for x < 0 (9)

and that u(x) must be continuous at x = 0, with no requirement on the derivative at x = 0.

§5 Delta function potential

The boundary conditions for the delta function potential V (x) = gδ(x) can be derived by considering
it as a limit of a square barrier potential:

Va(x) =

{

V0 −a < x < a

0 otherwise
. (10)

and we consider the limit a→ 0, V0 → infty such that the area V0a remains constant and equal to g.
In this limit

limVa(x) = gδ(x). (11)

Here the limit is to be understood in the sense of limit for generalised functions. The above procedure
gives the correct requirement on the solution at x = 0, and the answer is the the solution should be
continuous and the discontinuity in the derivative is given by

du(x)

dx

∣

∣

∣

x=ε

−
du(x)

dx

∣

∣

∣

x=−ε

=
2m

~2
g. (12)

Accepting that u(x) is continuous at x = 0, the above condition on the derivative is easily seen to
follow directly from the Schrodinger equation.

−
~
2

2m

d2u(x)

dx2
+ gδ(x)u(x) = Eu(x) (13)

Integrating from −ε to ε we get

−
~
2

2m

du(x)

dx

∣

∣

∣

ε

−ε

+ g

∫

ε

−ε

u(x)δ(x)dx = E

∫

ε

−ε

u(x)dx (14)

−
~
2

2m

du(x)

dx

∣

∣

∣

ε

+
~
2

2m

du(x)

dx

∣

∣

∣

−ε

+ gu(0) = E

∫

ε

−ε

u(x)dx (15)

Taking the limit ε→ 0, and noting that for a continuous integrand the right hand side is zero, we get
the desired condition on the discontinuity of the derivative at x = 0.
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