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§1 Quantum Mechanics of a Particle With Spin

§1 Spin as a dynamical variable

For a classical particle the angular momentum, given by ~r× ~p, is zero when the particle is

at rest.In order to explain anomalous Zeeman effect it was suggested by Goudsmidt and

Uhlenbeck that electron possesses angular momentum at rest whose component in any

fixed direction can take one of the two values 1
2~ or −1

2~). Associated with spin there is

a magnetic moment, of one negative Bohr magneton, given by

~µ = − e

mc
~S

Many elementary particles are found to have angular momentum at rest. This angular

momentum is called spin.
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In order to explain the Zeeman splitting of atomic spectra in presence of magnetic

fields it became necessary to assign additional angular momentum to the electron which

is named spin. More precisely spin of a particle is the angular momentum of the particle

at rest.

Spin is an observable associated with all the fundamental particles, having the same

properties as the angular momentum. We associate three operators Sx, Sy, and Sz with

spin angular momentum and assume that they satisfy angular momentum algebra.

[Sx, Sy] = i~Sz (1)

[Sy, Sz] = i~Sx (2)

[Sz, Sx] = i~Sy (3)

This algebra implies that the operator ~S2 = S2
x + S2

y + S2
z commutes with all the three

components of spin. Since different components of spin do not commute, a commuting

set of operators has ~S2 and components of the spin along any one direction; most choice

being ~S2 and Sz. The results on angular momentum apply to the spin also and we have

• The eigenvalues of ~S2 are given by s(s + 1)~2 where s is a positive integer of half

integer.

• For a given value of s, the eigenvalues of Sz are s, s− 1, s − 2, . . . ,−s.

• A particle will be said to have spin s if the the maximum allowed value of Sz is s~,

which is same as ~S2 having value s(s+ 1)~2.

A simultaneous eigenvector of ~S2 and Sz will be denoted by |sm〉 which will have the

properties

~S2|sm〉 = s(s+ 1)~2|sm〉 (4)

~Sz|sm〉 = m~|sm〉 (5)

In all there are (2s+1) values of m ranging from −s to s and therefore (2s+1) eigenvectors

|sm〉. The vector space needed to descrbe spin is linear span of all the vectors |sm〉 and
is (2s + 1) dimensional.

§2 Spin wave function and spin operators

Representation of Spin Wave Function

In order to describe the spin degrees of freedom, it is convenient to introduce a repre-

sentation. For this we need to select a complete commuting set of hermitian operators

and construct an orthonormal basis from their simultaneous eigenvectors. a suitable set

consists of ~S2 and Sz. In order to proceed further, we want to work with an explicit
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representation of the spin. We arrange the eigenvectors |s,m〉 in descending order in m to

get a basis
{

|s,m〉
∣

∣m = s, s − 1, · · · ,−s + 1,−s
}

. An arbitrary state vector |x〉 is then a

linear combination of the basis elements

|x〉 =
s

∑

m=−s

αm|sm〉 (6)

The interpretation of the numbers αm is that square of its modulus, |αk|2, gives the

probability that Sz will have the corresponding value m~. Following the convention of

arranging the basis vectors in the order of decreasing values for the spin projection Sz,

the |x〉 will be represented by a column vector

χ =











αs

αs−1
...

α−s











(7)

with (2s+ 1) components.

Representation of Spin Operators

The spin operators ~S will be represented by matrices with (2s + 1) rows and (2s + 1)

columns. First of all, the matrix for Sz will be diagonal matrix with eigenvalues of Sz

appearing along the main diagonal.

Sz = ~

















s 0 0 · · · · · · 0
0 s− 1 0 · · · · · · 0
0 0 s− 2 · · · · · · 0
0 0 0 · · · · · ·
· · · · · · · · · · · · · · · 0
0 0 0 · · · · · · −s

















(8)

The matrices for Sx and Sy are found by first obtaining the matrices for S± and using

Sx = 1
2(S+ + S−) and

−i
2 (S+ − S−). To construct these matrices one needs to know the

matrix elements 〈s,m′|S±|s,m〉 which can be computed by making use of the result

S±|s,m〉 =
√

s(s+ 1)−m(m± 1) ~ |s,m± 1〉 (9)

We shall give the answer for spin 1
2 and spin 1 matrices. The spin half matrices are

related to the Pauli matrices σx, σy, σz and are given by

~S =
~

2
~σ (10)

This result is derived in the solved problem below. The corresponding result for the spin

one matrices is
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Sx = ~√
2





0 1 0
1 0 1
0 1 0



 ; Sy = ~√
2





0 −i 0
i 0 −i
0 i 0



 ; Sz = ~





1 0 0
0 0 0
0 0 −1



 .

and is left as en exercise for the reader.

§3 Pauli Matrices

We summarize some important properties of Pauli Matrices.

1. The three Pauli matrices are given by

σ1 =

(

0 1
1 0

)

σ2 =

(

0 −i
i 0

)

σ3 =

(

1 0
0 −1

)

(11)

2. The Pauli matrices satisfy the commutation relations.

[σi, σj ] = 2iǫijkσk (12)

3. The square of each Pauli matrix is unity. So is the square of n̂ · ~σ where n̂ is a unit

vector.

σ21 = σ22 = σ23 = Î; n̂ · ~σ2 = Î (13)

4. Every Pauli matrix anticommutes with the other two Pauli matrices. There does not

exist a nonzero 2× 2 matrix which anticommutes with all the three Pauli matrices.

5. The above relations can be written in various different forms.

[σi, σj ] = 2iǫijkσk (14)

σjσk + σkσj = 2δjk (15)

6. The above two relations imply that

σjσk = δjk + iǫjkℓσℓ (16)

7. The above statements are can be rewritten as

(a) [~a · ~σ,~b · ~σ] = 2i(~a×~b) · ~σ
(b) (~a · ~σ)2 = |~a|2

(c) (~a · ~σ)(~b · ~σ) + (~b · ~σ)(~a · ~σ) = 2(~a ·~b)Î
(d) (~a · ~σ)(~b · ~σ) = (~a ·~b)Î + i(~a×~b) · ~σ

where ~a,~b are two arbitrary numerical vectors.
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8. The trace of each of the three matrices is zero. If we use the notation σ0 = Î we

have the relation, we can write

Tr(σµσν) = 2δµν (17)

9. The above identity can be used to prove linear independence of Pauli matrices. The

four matrices σµ, µ = 0, .., 3 form a basis in the complex vector space of all 2 × 2

matrices.

10. Let S be complex 2× 2 matrix which is expanded in terms of the matrices σµ

S =

3
∑

µ=0

Cµσµ (18)

The expansion coefficients are given by

Cµ =
1

2
Tr(Sσµ) (19)

11. The completeness relation for the Pauli matrices is contained in the identity

∑

a

(σa)ij(σ
a)kl = 2δilδjk − δijδkl. (20)

12. An important identity satisfied by the Pauli matrices is

exp(i~α · ~σ) = cos |~α|+ i~α · σ sin |~α| (21)

where ~α is a vector and

(α1, α2, α3), |~α| =
√

α2
1 + α22 + α2

2 (22)

§4 Total Wave Function of a Particle with Spin

We have so far discussed a quantum description of the spin degrees of freedom of a particle.

The other dynamical variables of a particle are the usual coordinates, momenta, etc. It

is assumed that the spin and position are independent of each other and hence can be

measured simultaneously. Similarly spin and momentum can be measured simultaneously.

Thus the spin operators ~S commute with position operators and also with the momentum

operators.In such a space a representation could be chosen in which the basis vectors are

simultaneous eigenvectors of ~S2, Sz, and ~r operators. Denoting a basis vector as |~r〉|sm〉,
an arbitrary vector will have an expansion

|ψ〉 =
∑

m

∫

dxCm~r|~r〉|sm〉 (23)
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The coefficients Cm~r give the probability amplitude of position begin ~r and Sz having a

value m, and just the (2s+1) component functions. By a change in notation we write the

(2s+ 1) component wave function as

Ψ(~r) =







ψ1(~r)
ψ1(~r)

...






(24)

In this representation the state of a particle with spin is described by a vector in the

vector space which is tensor product of a complex vector space of dimension (2s+ 1) and

the space of square integrable functions. So a particle with spin 1
2 , such as an electron, is

described by a two component wave function

Ψ(~r) =

(

ψ1(~r)
ψ1(~r)

)

(25)

The interpretation of the different components of Ψ is, that |ψ1(~r)|2d3r gives the prob-

ability of spin being up and position being between ~r and ~r + d~r. Similarly, |ψ2(~r)|2d3r
gives the probability of spin being down and position being between ~r and ~r + d~r. The

normalization condition now reads
∫

Ψ†(~r)Ψ(~r)d3~r =

∫

(

|ψ1(~r)|2 + |ψ2(~r)|2
)

d3~r = 1 (26)

Frequently, the total wave function factorizes and assumes the form

Ψ(~r) = ψ(~r)× χ (27)

where χ is a column vector with (2s + 1) components, so for an electron we will have

χ =

(

α
β

)

. (28)

We shall then refer to ψ(~r) as the space part of the wave function and the column vector

χ as the spin part of the wave function. The function ψ(~r) describes the translational

degrees of freedom, as usual, and the spin degrees of freedom are described by the column

vector χ.

)||(Short Examples 1 The following examples are about a spin half particle.

(1a) The allowed values of all three spin operators Sx, Sy, Sz are ±~

2
. This is most easily seen

by computing the eigenvalues of the corresponding spin operators, ~

2
~σ, for a spin 1

2
particle.

For the general case of â · ~S the computation of the eigenvalues is left as an exercise.

(1b) For a spin 1

2
particle the spin wave function corresponding to Sz obviously are

~

2
,

(

1
0

)

; −~

2
,

(

0
1

)

; (29)
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(1c) For a spin 1

2
particle, the spin wave functions corresponding to values ±~

2
for Sx can be

easily seen to be
~

2
,

1√
2

(

1
1

)

; −~

2
,

1√
2

(

1
−1

)

; (30)

(1d) For a spin 1

2
particle, the spin wave functions corresponding to values ±~

2
for Sy can be

easily seen to be
~

2
,

1√
2

(

1
i

)

; −~

2
,

1√
2

(

1
−i

)

; (31)

(1e) For the general case of n̂ · ~S, where n̂ is a unit vector, the eigenvectors can be written as

~

2
,

1√
2

(

1 + n3

n1 + in2

)

; −~

2
,

1√
2

(

n1 − in2

−1− n3

)

; (32)

)||(Short Examples 2 Using the results outlined in the previous ’Short Example List’ and
remembering the postulates, it is now easy to see that the spin wave function of spin 1

2

(i) is given by χ1 = 1
√

2

(

1
1

)

, if the spin points along positive x axis and

is given by χ2 = 1
√

2

(

1
−1

)

, if the spin points along negative x axis.

(ii) is given by χ1 = 1
√

2

(

1
i

)

, if the spin points along positive y axis and

is given by χ2 = 1
√

2

(

1
−i

)

, if the spin points along negative y axis.

(2a) can be written as χ1 =

(

1 + n3

n1 + in2

)

(apart from an overall normalization constant) if

the spin component along the unit vector n̂ ≡ (n1, n2, n3) is +~/2. If the spin component
along the unit vector n̂ is −~/2 the (un-normalized) spin wave function can be written as

χ2 =

(

n1 − in2

−1− n3

)

.

§2 Identical particles in quantum mechanics

§1 Indistinguishability of identical particles

In transition form classical to quantum mechanics one is forced to revise, or completely

give up, many classical concepts. Some examples are

- Superposition principle is new for particles.

- Precise values for observables is given up. in general only probabilities can be com-

puted.

- Not all observables can be measured simultaneously. Only those represented by a

simultaneous commuting set can be measured simultaneously.
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We shall see that for a system of two or more identical particles, the identity of individual

particles looses its meaning in quantum mechanics; one can only talk about the system

as a whole. We also need to introduce a new hypothesis about the states of a quantum

mechanical system of several identical particles.

Classically it is always possible to distinguish two electrons because they are point

particles having well defined positions. More importantly, this distinction can always be

maintained at all times because each particle has a well defined trajectories which can be

measured, and can also can be predicted if the interactions are known. This distinction

between the electrons can be maintained at all times, also by, measuring the positions of

each particle at successive times at regular intervals very accurately and doing this does

not disturb their motion.

For a quantum mechanical system consisting of several identical particles we note the

following.

• In the first place the particles cannot have well defined positions, only some proba-

bilities can be assigned to different values of the position.

• At any given time, it is certainly possible to localize each particle with great ac-

curacy.However, in general, the wave packets spread and it will not be possible to

maintain the localization at later times. Thus when the particles come very close we

would not be able to tell which particle was which one.

• The trajectories of particles do not have any meaning in quantum mechanics. One

may attempt to follow the motion in quantummechanics by measuring their positions

very accurately at short intervals; but this exercise turns out to be useless for all

practical purposes because it ’disturbs’ the motion of the particles.

It is important to realize that inability to distinguish identical nature of particles is not

due to some technical, theoretical or experimental, reasons. Even in principle a distinction

between two identical particles cannot be maintained any thought experiment or any

theoretical an analysis. Nor is this conclusion avoidable by improving upon the measuring

apparatus. This surprising conclusion is more due to the structure of the quantum theory,

rather than lack of a very accurate measuring apparatus. In some sense the nature of the

conclusion is very similar to the uncertainty principle about impossibility of very precise

simultaneous measurement of position and momentum. We , therefore, wish to conclude

that even the possibility of being able to distinguish between two identical particles does

not exist even in principle and that we should accept that they are indistinguishable.

In view of the above discussion, we abandon the attempts to distinguish between

identical particles. We assume that in a quantum mechanical system of identical particles

it is not possible to distinguish between any two identical particles; the individual particles

loose their identity and we should refer to the system as a ’whole’.
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This has far reaching consequences. for sake of definiteness, let us consider a system

of two electrons and let their wave function be ψ(ξ1, ξ2) where ξ1, ξ2 collectively denote

the space as well as the spin variables of the two electrons. Then ψ(ξ2, ξ1) will denote the

state of two electrons obtained by exchanging the two electrons. If the two electrons are

indistinguishable, this interchange of two electrons can have no effect on the state of the

system as whole and thus the wave functions ψ(ξ1, ξ2) and ψ(ξ2, ξ1) must represent the

same state and hence we must have

ψ(ξ1, ξ2) = exp(iα)ψ(ξ2, ξ1) (33)

for some real α, as required by the first postulate. The above equation is valid for all ξ1, ξ2

and hence, replacing ξ1 with ξ2 and ξ2 with ξ1 we get

ψ(ξ2, ξ1) = exp(iα)ψ(ξ1, ξ2) (34)

= exp(iα)ψ(ξ2, ξ3) (35)

and hence we conclude that

exp(2iα) = 1 ⇒ exp(iα) = 1 (36)

Therefore, we arrive at an important conclusion that under exchange of all variables the

wave function of two identical particles must be symmetric or antisymmetric.

ψ(ξ2, ξ1) = ±ψ(ξ1, ξ2) (37)

The symmetric or the antisymmetric nature Eq.(37), if enforced at initial time, will be

preserved at all times. To see this let us introduce a permutation operator P12 by

P12ψ(ξ1, ξ2) = ψ(ξ2, ξ1) (38)

the Eq.(37) is just the statement that the state must be an eigenstate of the permutation

operator. The Hamiltonian for two identical particles will be symmetric under exchange

of ξ1 and ξ2 and hence commutes with P12 implying that the permutation operator is a

constant of motion. Thus the wave function will remain an eigenfunction of P12 with the

same eigenvalue at all times if it is chosen to be eigenfunction at initial time.

§2 Symmetrization postulate

hort Examples on illustrating use of symmetrization postulate for identical bosons in

quantum mechanics.

We now introduce symmetrization postulate for a system of several identical particles.

For a system of two identical particles wave function must be chosen to be symmetric
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or antisymmetric under exchange of space and spin variables, However, at this stage,

theoretical considerations alone in non relativistic quantum mechanics, do not help us in

deciding which one, symmetric or anti symmetric wave function is the correct choice for

a given particle. An appeal to experiment does give an answer which is contained in the

statement of the symmetrization postulate. Basically the symmetry property of the total

wave function of a system of identical particles is tied to the spin of the particle. The

symmetrization postulate states that

• For a system of two identical particles with integral spin bosons the total wave

function must be symmetric under simultaneous exchange of all the variables such

as the space and spin variables. For a system of two identical particles of half integral

spin fermions the full wave function must be anti-symmetric under a simultaneous

exchange of all the variables such as the space and spin variables.

If ξ1, ξ2 denote the set of all variables such as, space and spin, of two identical

particles. Then the symmetrization postulate states that the total wave function

ψ(ξ1, ξ2) must be symmetric for bosons and antisymmetric for fermions under an

exchange of ξ1 and ξ2.

ψ(ξ2, ξ1) = +ψ(ξ1, ξ2) ( bosons) (39)

ψ(ξ2, ξ1) = −ψ(ξ1, ξ2) ( fermions) (40)

• The symmetrization postulate for a system of n− identical particles sates that the

total wave function must be symmetric simultaneous under exchange of variables ξj

and ξk for every pair j, k, if the particles are bosons and the relation

ψ(ξ1, ·ξj · · · , ξk, · · · , ξn) = +ψ(ξ1, ·ξk, · · · , ξj , · · · , ξn) (41)

should hold for all pairs AK. Similarly, for a system of n− identical fermions the

total wave function must be anti-symmetric under simultaneous exchange of variables

ξj, ξk for every pair j, k

ψ(ξ1, ·ξj · · · , ξk, · · · , ξn) = −ψ(ξ1, ·ξk, · · · , ξj , · · · , ξn) (42)

For a system of several identical bosons, the total wave function Ψ(ξ1, · · · , ξn) re-

mains unchanged under an arbitrary permutation of ξ1, · · · , ξn; where as for fermions

the wave function remains unchanged under an even permutation but changes sign

under an odd permutations.

We now give some explanatory remarks on the symmetrization postulate.

1. The postulate is a statement about the full wave function of the system of identical

particles under a simultaneous exchange of all the variables. For example, there

is no constraint on the space part (or the spin part) of the wave function alone need.
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2. For composite systems such those consisting of both bosons and fermions, the sym-

metry rrequirementshold for every pair of identical bosons and identical fermions

separately.

3. For a system consisting of several ’particles’ which themselves could be bound state

of bosons and fermions the postulate applies with spin interpreted to mean the total

angular momentum at rest.

4. While for a system of two particles the symmetry property is restricted to symmetry

or antisymmetry alone, for a system of many identical particles theoretical consid-

erations allow existence of a variety of possibilities under permutation of variables.

These choices, known generally as ’para-statistics’, do not seem to play any role for

real physical systems.

Our discussion of the symmetrization postulate will be incomplete if we do not mention

the spin statistics connection contained in the postulates is contained the symmetriza-

tion postulate has been proved by Pauli and Luders within the framework of relativistic

quantum field theory under very general assumptions such as relativistic invariance, micro

causality and positivity of the Hamiltonian.

Here give two useful statements which will be needed repeatedly in this connection.

✍ When we add two, equal, angular momenta j the possible resulting values are J =

2j, 2j − 1, · · · , 0. Of these the state with the highest value, J = 2j, is symmetric

under an exchange of the two particles, the next one, with 2j − 1 is antisymmetric;

the states being alternately symmetric and antisymmetric as J takes on the values

in descending order.

✍ For a two particle system, the effect of an exchange of the positions of the two parti-

cles is same as the parity on the wave function in the centre of mass frame. Therefore

under an exchange of the space variables the space part of the wave function is sym-

metric for even ℓ and antisymmetric for odd ℓ.

§3 Illustrative Examples

Examples

We shall now take up some examples of consequence of symmetrization postulate for a

system of two identical particles. We begin with two useful statements which will be

needed repeatedly in this connection.

1. When we add two, equal, angular momenta j the possible resulting values are J =

2j, 2j − 1, · · · , 0. Of these the state with the highest value, J = 2j, is symmetric

under an exchange of the two particles, the next one, with 2j − 1 is antisymmetric;
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the states being alternately symmetric and antisymmetric as J takes on the values

in descending order.

2. For a two particle system, the effect of an exchange of the positions of the two parti-

cles is same as the parity on the wave function in the centre of mass frame. Therefore

under an exchange of the space variables the space part of the wave function is sym-

metric for even ℓ and antisymmetric for odd ℓ.

)||(Short Examples 3 Let us consider two particles interacting via a spherically symmet-

ric potential v(r) where r is the distance between the particles. We write the total wave

function as

Ψtot(~r,ms1 ,ms2) = ψspace(~r)ψspin (43)

If each particle has spin s the total spin has the values S = 2s, 2s − 1, 2s − 2, · · · 0 with

symmetry properties as given by rule ⋆1). We shall see that for each value of total spin

S only odd, or even, angular momentum ℓ values will be permitted when the particles are

idemtical. We discuss four cases in the following.

(3a) When the two particle are not identical there is no restriction symmetry of the total
wave function. Therefore, all possible combination of ℓ and s values are permitted.

(3b) When the two particles are identical fermions, 2s = odd integer, the total wave function
must be antisymmetric under an exchange of space and spin variables. Therefore, antisym-
metric space wave functions ( ℓ = odd) must be chosen with symmetric spin wave functions,
(S = 2s, 2s− 2, · · · ). Also the space part of wave function must be symmetric, (ℓ = even )
when the spin part of the wave function is antisymmetric (S = 2s− 1, 2s− 3, · · · ).

(3c) When the two particles are identical bosons, s = integer, the total wave function must
be symmetric. Hence either both space and spin parts must be symmetric or both must be
antisymmetric. Thus even ℓ values will correspond to total spin S = 2s, 2s− 2, · · · and odd
ℓ values will correspond to the total spin S = 2s− 1, 2s− 3, · · · .

(3d) In the special case of two identical spin zero bosons, the total wave function is just the
space part alone which must be symmetric and hence ℓ must be even. This give the statement
that the spin and parity of a system of two identical spin zero bosons must both be even.

(3e) All the cases of identical particles are summarized by saying that

(−1)ℓ+2S = 1 (44)

or ℓ+ 2S must be even.

Problem 1: Three identical spin zero bosons exist in states described by normalized wave

functions χ, φ, ψ write the total wave function for the system.
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,Solution: The total wave function is obtained by symmetrization of the product χ(~r1)φ(~r2)ψ(~r3). In

all there will 3! terms obtained by permuting the postions ~r1, ~r2, ~r3 . Thus

Ψtot(~r1, ~r2, ~r3) =
1

√
3!

[

{

χ(~r1)φ(~r2)ψ(~r3) + 1 → 2 + 1 → 3
}

+ 2 → 3
]

(45)

=
1

√
3!

{

χ(~r1)φ(~r2)ψ(~r3) + χ(~r2)φ(~r1)ψ(~r3) + χ(~r3)φ(~r2)ψ(~r1) (46)

+χ(~r1)φ(~r3)ψ(~r2) + χ(~r3)φ(~r1)ψ(~r2) + χ(~r2)φ(~r3)ψ(~r1)
}

(47)

The factor (1/
√
6) has been put to ensure correct normalization.

Problem 2: For a system of three identical fermions in states ψ1, ψ2, ψ3 write the total

wave function.

,Solution: Let ξ1, ξ2, ξ3 collectively denote the space and spin variables of the three particles. The total

wave function should be completely antisymmetric and can be written as a determinant, known as Slater
determinant.

Ψ(ξ1, ξ2, ξ3) =
1

√
3!

∣

∣

∣

∣

∣

∣

ψ1(ξ1) ψ2(ξ1) ψ3(ξ1)
ψ1(ξ2) ψ2(ξ2) ψ3(ξ2)
ψ1(ξ3) ψ2(ξ3) ψ3(ξ3)

∣

∣

∣

∣

∣

∣

(48)

Problem 3: Two identical spin s particles interact via a spherically symmetric potential

V (r) find the restrictions on allowed combinations of ℓ and Stot where ℓ is the orbital

angular momentum and Stot is the total spin of the system.

Let us consider a system of two particles interacting via a central potential V (|~r1− ~r2|).
In classical, as well as quantum, mechanics this two body problem is solved by changing the

variables to the position of the center of mass ~R and relative coordinate ~r. The problem

then reduces free motion of the centre of mass and that of a particle of reduced mass µ

moving in a potential V (~r). The Schrodinger equation for the two particle problem

H =
~p21
2m

+
~p22
2m

+ V (| ~r1 ~r2|) (49)

Here ~r1 = (x1, y1, z1), ~r2 = (x2, y2, z2), denote the position vectors of the nucleus and the

electron respectively, and m1 and m2 are their masses. The Schrodinger equation for the

an electron and a nucleus of charge Z is

~
2

2m1

(

d2

dx21
+

d2

dy21
+

d2

dz21

)

Ψ− ~
2

2m2

(

d2

dx22
+

d2

dy22
+

d2

dz22

)

Ψ+ V (| ~r1 ~r2|)ΨE⊖

Introducing the centre of mass coordinate, ~R = (X,Y,Z), and the relative coordinate,

~r = (x, y, z) defined by

~R =
m1~r1 +m2~r2
m1 +m2

, ~r = ~r1 − ~r2 (50)

the Schrodinger equation, in terms of the new variables, takes the form

~
2

2M

(

d2

dX2
+

d2

dY 2
+

d2

dZ2

)

Ψ− ~
2

2µ

(

d2

dx2
+

d2

dy2
+

d2

dz2

)

Ψ+ V (|~r|)ΨE⊖ (51)
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If we now write the full wave function Ψ(~R,~r) as

Ψ(~R,~r) = U(~R)u(~r),

and substitute it in the Schrodinger equation, the variables ~R,~r are separated and we would

get the differential equations for U(~R), u(~r) given by

~
2

2M

(

d2

dX2
+

d2

dY 2
+

d2

dZ2

)

U(~R) = EcmU(~R) (52)

− ~
2

2µ

(

d2

dx2
+

d2

dy2
+

d2

dz2

)

u(~r) + V (|~r|)u(~r) = Eu(~r) (53)

where M = m1+m2 is the total mass, µ is the reduced mass µ = (m1m2)
(m1+m2)

, and Ecm, E are

constants appearing from the process of separation of variables so that E = Ecm +E. We

shall now onwards take masses of the two particles to be equal. The equation (52)for U(~R),

is a free particle equation and the centre of mass moves like a free particle. The equation

(53) refers to the relative motion of the two particles. The Schrodinger equation (52) can

be solved by separation of variables in polar coordinates r, θ, φ. The angular part of the

wave function is given by a spherical harmonics Yℓm(θ, φ) and the total wave function

assumes the form

u(~r) = Rnℓ(r)Yℓm(θ, φ).

Note that the exchange of the two particle coordinates ~r1 ↔ ~r2 is equivalent to parity

operation ~r → −~r and the total wave function u(~r) is symmetric for even ℓ values, anti-

symmetric for odd ℓ values:

u(~r) = (−1)ℓu(~r). (54)

If the two particles carry the same spin s, the total spin Stot will have values from 2s to 0 in

steps of 1. The spin wave function will be alternately symmetric and antisymmetric under

the exchange of spin variables with the highest spin state with 2s being always symmetric

under the exchange. For identical particles the total wave function must be symmetric

for bosons and antisymmetric for fermions. This gives rise to restrictions on the allowed

combinations of values of total spin Stot and orbital angular momentum ℓ. For a spin half

particle the restrictions are found in the table below. The last column gives allowed values

of orbital angular momentum ℓ.

Total Spin Spin wave
function

Total wave
function

Space wave
function

Allowed
values of ℓ

1 (Triplet state) Symmetric Antisymmetric Antisymmetric odd only

0 (Singlet state) Antisymmetric Antisymmetric Symmetric even only
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§3 A First Look at He Atom Energy Levels

He atom energy levels:

As an example of system of two identical particles we shall discuss He atom. The Hamil-

tonian for He atom is given by

H =
p21
2m

+
p22
2m

− 2e2

r1
− 2e2

r2
+

e2

|~r1 − ~r2|

If the electrostatic interaction, e2/|~r1 − ~r2|, between the two electrons is neglected as

a first approximation, the hamiltonian becomes a sum of two hydrogen atom like hamil-

tonians. In this approximation the electronic states are described by quantum numbers

(n1, l1,m1) and (n2, l2,m2) for the two electrons. Let u1, u2 denote corresponding H-atom

wave functions. The space part of the wave function for the two electrons will be product

wave function u1(~r1)u2(~r2), which must be properly symmetrized or anti-symmetrized as

discussed below.

In very many situations the total wave function is a product of a part describing space

properties and a spin wave function. Thus we write

Φtotal = ψspace(~r1, ~r2)χspin(m1,m2)

where m1,m2 refer to the spin variables for the two electrons. As each electron carries

spin 1/2, the total spin can take values 1 (triplet) and 0 (singlet). The values of total

spin determines the symmetry property of spin wave function under an exchange of spin

variables. It is known that spin wave function must be symmetric for S = 1 and antisym-

metric for S = 0 states. The requirement that total wave function be antisymmetric (for

2 electron systems) fixes the symmetry property of the space part of the wave function as

summarized in the table given below.

Spin State Total Spin Spin wave function Space wave function

Triplet S = 1 Symmetric Antisymmetric
Singlet S = 0 Antisymmetric Symmetric

Therefore, out of the two combinations for the space wave function

ψ±(~r1, ~r2) =
1√
2
(u1(~r1)u2(~r2)± u1(~r2)u2(~r1))
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the symmetric combination ψ+ should be used for the singlet states (S = 0) and the

antisymmetric combination ψ− should be used for triplet states (S = 1). The ground

state corresponds to n1 = n2 = 1 l1 = l2 = 0 m1 = m2 = 0 and the antisymmetric

combination ψ− vanishes. Only the symmetric combination is nonzero. Thus the ground

state is a singlet state; the same is true of all other states corresponding to electrons having

identical (n, l,m) quantum numbers.

When the two electron states correspond to different (n, l,m) quantum numbers, both

symmetric and antisymmetric combinations ψ±(r̄1, r̄2) are possible. However, the anti-

symmetric combination ψ±(~r1, ~r2) vanishes when ~r1 = ~r2. Therefore, the probability that

the two electrons will be found close to each other will be small for ψ− ( for triplet states,

known as ortho helium) and large for ψ+ (singlet states, known as para helium). Since the

Coulomb interaction between two electrons is positive and is large when their separation

is small, total Coulomb energy will be higher in singlet states as compared to its value in

the triplet state. These predictions are in accordance with the results on energy levels of

He atom derived from the spectrum of He atom.
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