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3
Binomial, Poisson, and Gaussian

Distrubutions

3.1 Binomial Distribution

Consider a system consisting of one coin. It has two micro states : H and T.

The probability for the system to be in micro state H is p and that in micro

state T is q = 1 − p.

Consider the case with p = 0.6 and hence q = 1 − p = 0.4. A possible

Maxwell ensemble of micro states is

{T, H, H, H, T, H, H, T, H, T }.

Notice that the ensemble contains ten elements. Six elements are H and four

are T. This is consistent with the given probabilities: P(H) = 6/10; and

P(T ) = 4/10.

However a Gibbs ensemble is constructed by actually tossing N identical

1



2 3. BINOMIAL, POISSON, AND GAUSSIAN DISTRUBUTIONS

and independent coins. In the limiet N → ∞, sixty percent of the coins shall

be in micro state H and forty, T. To ensure this we need to take the size of

the ensemble N , to be very large. How large ? You will get an answer to this

question in what follows.

Let us say, we attempt to construct the ensemble by actually carrying out

the experiment of tossing identical coins or by tossing the same coin several

times independently. What is the probability that in the experiment there

shall be n1 ’Heads’ and hence n2 = (N −n) ’Tails’ ? Let us denote this by the

symbol B(n1, n2;N), where N is the number of independent identical coins

tossed or number of times a coin is tossed independently. It is readily seen,

B(n1, n2;N) =
N !

n1! n2!
pn1 qn2 ; n1 + n2 = N. (3.1)

B(n1, n2;N) is called the Binomial distribution. Let n1 = n, n2 = N − n, we

can write the Binomial distribution for the single random variable n as,

B(n;N) =
N !

n!(N − n)!
pnqN−n

Figure (3.1) depicts Binomial distribution for N = 10, p = 0.5 (Left) and 0.35

(Right). First moment of n : What is average value of n ? The average,

also called the mean, the first moment, the expectation value etc. is denoted

by the symbol 〈n〉 and is given by,

〈n〉 =
N∑

n=0

n B(n;N) =
N∑

n=1

n
N !

n! (N − n)!
pn qN−n,

= Np
N∑

n=1

(N − 1)!

(n− 1)! [N − 1 − (n− 1)]!
pn−1 qN−1−(n−1),

= Np
N−1∑

n=0

(N − 1)!

n!(N − 1 − n)!
pn qN−1−n,

= Np(p + q)N−1 = Np.

Second factorial moment of n : The second factorial moment of n
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Figure 3.1: Binomial distribution : B(n;N) =
N !

n!(N − n)!
pn(1 − p)N−n with

N = 10; B(n;N) versus n; depicted as sticks; (Left) p = 0.5; (Right) p = .35.

is defined as 〈n(n− 1)〉. It is calculated as follows.

〈n(n− 1)〉 =
N∑

n=0

n(n− 1)B(n;N),

=
N∑

n=2

n(n− 1)
N !

n!(N − n)!
pnqN−n,

= N(N − 1)p2
N∑

n=2

(N − 2)!

(n− 2)![(N − 2) − (n− 2)!
pn−2q(N−2)−(n−2),

= N(N − 1)p2
N−2∑

n=0

(N − 2)!

n![(N − 2) − n]!
pnq(N−2)−n.

= N(N − 1)p2(q + p)N−2 = N(N − 1)p2.

Moments of n : We can define higher moments. The k-th moment is

defined as

Mk = 〈nk〉 =
N∑

n=0

nk B(n). (3.2)

Variance of n : An important property of the random variable is variance.
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It is defined as,

σ2
n =

N∑

n=0

(n−M1)2 B(n),=
N∑

n=0

n2B(n) −M2
1 ,= M2 −M2

1 . (3.3)

We have,

〈n(n− 1)〉 = N(N − 1)p2,

〈n2〉 − 〈n〉 = N2p2 −Np2,

〈n2〉 = N2p2 −Np2 +Np,

σ2
n = 〈n2〉 − 〈n〉2 = Npq. (3.4)

The square-root of variance is called the standard deviation. A relevant quan-

tity is the relative standard deviation. It is given by the ratio of the standard

deviation to the mean. For the Binomial random variable, we have,

σn

〈n〉 =
1√
N

√
q

p
. (3.5)

The relative standard deviation is inversely proportional to
√
N. It is small

for large N . It is clear that the number of elements N , in a Gibbs ensemble

should be large enough to ensure that the relative standard deviation is as

small as desired. Let me now describe a smart way of generating the moments

of a random variable.

3.2 Moment Generating Function

Let B(n) denote the probability that n coins are in micro state "Heads" in an

ensemble of N coins. We have shown that,

B(n) =
N !

n!(N − n)!
pnqN−n. (3.6)
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The moment generating function is defined as

B̃(z) =
N∑

n=0

zn B(n). (3.7)

The first thing we notice is that B̃(z = 1) = 1. This guarantees that the prob-

ability distribution B(n) is normalised. The moment generating function is

like a discrete transform of the probability distribution function. We transform

the variable n to z.

Let us now take the first derivative of the moment generating function

with respect to z. We have,

dB̃

dz
= B̃′(z) =

N∑

n=0

n zn−1 B(n),

zB̃′(z) =
N∑

n=0

n zn B(n). (3.8)

. Substitute in the above z = 1. We get,

B̃′(z = 1) = 〈n〉. (3.9)

Thus the first derivative of B̃ evaluated at z = 1 generates the first moment.

Now take the second derivative of B̃(z) to get

d2B̃

dz2
=

N∑

n=0

n(n− 1)zn−2B(n),

z2d
2B̃

dz2
=

N∑

n=0

zn n(n− 1) B(n). (3.10)

Substitute in the above z = 1 and get,

d2B̃

dz2

∣∣∣∣∣
z=1

= 〈n(n− 1)〉, (3.11)

For the Binomial random variable, we can derive the moment generating func-
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tion :

B̃(z) =
N∑

n=0

znB(n) =
N∑

n=0

N !

n! (N − n)!
(zp)n qN−n,= (q + zp)N . (3.12)

The moments are generated as follows.

dB̃

dz
= N(q + zp)N−1p, (3.13)

〈n〉 =
dB̃

dz

∣∣∣∣∣
z=1

= Np, (3.14)

d2B̃

dz2
= N(N − 1)(q + zp)N−2p2, (3.15)

〈n(n− 1)〉 =
d2B̃

dz2

∣∣∣∣∣
z=1

= N(N − 1)p2. (3.16)

3.3 Binomial → Poisson

When N is large, it is clumsy to calculate quantities employing Binomial

distribution. Consider the following situation.

I have N molecules of air in this room of volume V . The molecules are

distributed uniformly in the room. In other words the number density, denoted

by ρ is same at all points in the room. Consider now an imaginary small volume

v < V completely contained in the room. Consider an experiment of choosing

randomly an air molecule from this room. The probability that the molecule

shall be in the small volume is p = v/V ; the probability that it shall be out

side the small volume is q = 1 − (v/V ). There are only two possibilities. We

can use Binomial distribution to calculate the probability for n molecules to

be present in v.

Consider first the problem with V = 10M3, v = 6M3 and N = 10. The

value of p for the Binomial distribution is 0.6. The probability of finding n
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molecules in v is then,

B(n;N = 10) =
10!

n!(10 − n)!
(0.1)n(0.9)10−n. (3.17)

The table below gives the probabilities calculated from the Binomial distribu-

tion. Consider the same problem with v = 10−3 M3 and N = 105. We have

n B(n; 10) n B(n; 10)

0 0.0001 6 0.2508
1 0.0016 7 0.2150
2 0.0106 8 0.1209
3 0.0425 9 0.0403
4 0.1115 10 0.0060
5 0.2007 − −

Table 3.1: Probabilities calculated from Binomial distribution : B(n;N =
10, p = .1)

p = 10−4 and Np = 10. Immediately we recognise that Binomial distribution

is not appropriate for this problem. Calculation of the probability of finding

n molecules in v involves evaluation of factorial of 100000.

What is the right distribution for this problem and problems of this kind

? To answer this question, consider what happens to the Binomial distribution

in the limit of N → ∞, p → 0, and Np = µ, a constant1. Note that

Np = Nv/V = ρv = constant.

We shall show below that in this limit, Binomial goes over to Poisson

distribution.

1Note that for a physicist, large is infinity and small is zero.
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3.4 Poisson Distribution

We start with

B̃(z) = (q + zp)N . (3.18)

We can write the above as

B̃(z) = qN

(
1 +

zp

q

)N

,

= (1 − p)N

(
1 +

zp

q

)N

, (3.19)

=
(

1 −Np
1

N

)N
(

1 +
zNp

q

1

N

)N

. (3.20)

In the above replace Np by µ and q by 1 to get,

B̃(z) =
(

1 − µ

N

)N (
1 +

zµ

N

)N

.

In the limit of N → ∞ we have by definition2,

B̃(z) ∼ exp(−µ) exp(zµ),

= P̃ (z). (3.21)

Thus in the limit N → ∞, p → 0 and Np = µ, we find B̃(z) → P̃ (z), given

by

P̃ (z) = exp[−µ(1 − z)]. (3.22)

2exponential function is defined as

exp(x) = limit

N→∞

(
1 +

x

N

)N
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The coefficient of zn in the power series expansion of P̃ (z) gives P (n),

P (n) =
µn

n!
exp(−µ). (3.23)

The above is called the Poisson distribution 3. Thus in the limit of N → ∞,

p → 0, Np = µ, the Binomial distribution goes over to Poisson distribution.

Figure (3.2) depicts Poisson distribution for µ = 1.5 and 9.5.
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Figure 3.2: Poisson distribution with mean µ, depicted as sticks. Gaussian
distribution with mean µ and variance σ2 = µ depicted by continuous line.
(Left) µ = 1.5; (Right) µ = 9.5. For large µ Poisson and Gaussian coincide

3We shall come across Poisson distribution in the context of Maxwell-Boltzmann statis-
tics. Let nk denote the number of ’indistinguishable classical’ particles in a single-particle
state k. The random variable nk is Poisson-distributed.
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3.4.1 Binomial → Poisson à la Feller

Following Feller 4, we have

B(n;N)

B(n− 1;N)
=

N ! pn qN−n

n! (N − n)!

(n− 1)! (N − n + 1)!

N ! pn−1 qN−n+1
,

=
p (N − n+ 1)

n q
,

=
N p− p (n− 1)

n q
,

∼(
N→∞

p → 0 Np=µ

)
µ

n
. (3.24)

Thus we get for large N , B(n;N) = B(n− 1;N)µ/n.

Start with B(n = 0;N) = qN . We have

qN = (1 − p)N =
(

1 − Np

N

)N

=
(

1 − µ

N

)N
N→∞

∼
exp(−µ).

Thus for N → ∞, we get B(n = 0;N) = P (n = 0;µ) = exp(−µ). We get,

P (n = 1;N) = µ exp(−µ), P (n = 2;N) = (µ2/2!) exp(−µ), P (n = 3;N) =

(µ3/3!) exp(−µ). Finally prove by induction P (n;N) = (µn/n!) exp(−µ).

The next item in the agenda is on Gaussian distribution. It is a continuous

distribution defined for −∞ ≤ x ≤ +∞. Before we take up the task of

obtaining Gaussian from Poisson (in the limit µ → ∞), let us learn a few

relevant and important things about continuous distribution.

4William Feller, An Introduction to PROBABILITY : Theory and its Applications, Third
Edition Volume 1, Wiley Student Edition (1968)p.153
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3.5 Characteristic Function

Let x = X(ω) be a continuous random variable, and f(x) its probability

density function. The Fourier transform of f(x) is called the characteristic

function of the random variable x = X(ω) :

φX(k) =
∫ +∞

−∞

dx exp(−ikx) f(x).

Taylor expanding the exponential in the above, we get

φX(k) =
∞∑

n=0

(−ik)n

n!

∫
∞

−∞

dx xn f(x) =
∞∑

n=0

(−ik)n

n!
Mn. (3.25)

Thus the characteristic function generates the moments.

3.6 Cumulant Generating Function

The logarithm of the characteristic function is called the cumulant generating

function. ψX(k) = lnφX(k). Let us write the above as,

ψX(k) = ln

(
1 +

∞∑

n=1

(−ik)n

n!
Mn

)
,

=
∞∑

n=1

(−1)n+1

n

(
∞∑

m=1

(−ik)m

m!
Mm

)n

. (3.26)

We now express ψX(k) as a power series in k as follows

ψX(k) =
∞∑

n=1

(−ik)n

n!
ζn. (3.27)

where ζn is called the n-th cumulant.

From the above equations we can find the relation between moments and

cumulants.
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3.7 The Central Limit Theorem

Let {Xi : i− 1, 2, · · · , N} denote independent random variables and

Y =
N∑

i=1

Xi (3.28)

their sum. Also let φi(k) denote the characteristic function of Xi and φY (k)

that of Y . Then by convolution theorem,

φY (k) =
N∏

i=1

φi(k) (3.29)

If the random variable are also identical, and φX(k) denote the characteristic

of the common distribution, then

φY (k) = [φX(k)]N (3.30)

Now consider the scaled random variable defined as,

Y =
1

N

N∑

i=1

Xi. (3.31)

The characteristic function of Y is obtained by scaling k to k/N , see below.

φY (k) =

[
φX

(
k → k

N

)]N

(3.32)

We can write the above in terms of cumulant generating function, as

follows.

φY (k) = exp


ln

[
φX

(
k → k

N

)]N



= exp

[
N lnφX

(
k → k

N

)]
,
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= exp

[
N

∞∑

n=1

(−ik)n

n!

ζn

Nn

]

= exp

[
∞∑

n=1

(−ik)n

n!

ζn

Nn−1

]
,

= exp

[
−ikµ − k2

2!

σ2

N
+

∞∑

n=3

(−ik)n

n!

ζn

Nn−1

]
,

= exp

[
−ikµ − k2

2!

σ2

N
+ O(1/N2)

]

∼

N→∞
exp

[
−ikµ − k2

2!

σ2

N

]
. (3.33)

Thus in the limit of N → ∞, the characteristic function of Y , is given by

φ)Y (k) = exp

(
−ikµ − k2

2!

σ2

N

)
(3.34)

We shall show shortly that the above expression is the characteristic function

of a Gaussian random variable with mean µ and variance σ2/N . Also we see

that for the entire derivation above to hold good, we require that the variance

σ2 of the common distribution must be finite i.e. σ2 < ∞.

In fact it is clear that the central limit theorem obtains even if the random

variables participating in the sum are not be identical. The only requirement

is that they should be independent of each other and and none of them should

have infinite variance.

Thus, the sum of N independent finite variance - random variables tends

to have a Gaussian distribution for large N . The Gaussian distribution has a

variance inversely proportional to N , and hence is small for large N . This is

called the central limit theorem.
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3.8 Poisson → Gaussian

Start with the moment generating function of the Poisson random variable:

P̃ (z;µ) = exp[−µ(1 − z)]. Substitute z = exp(−ik) and get, P̃ (k;µ) =

exp [−µ {1 − exp(−ik)}] . Carry out the power series expansion of the expo-

nential function and get,

P̃ (k;µ) = exp

[
∞∑

n=1

(−ik)n

n!
µ

]
. (3.35)

We recognise the above as the cumulant expansion of a distribution for which

all the cumulants are the same µ. For large value µ it is adequate to consider

only small values of k. Hence we retain only terms upto quadratic in k. Thus

for k small, we have,

P̃ (k) = exp

[
−ikµ − k2

2!
µ

]
. (3.36)

The above is the Fourier transform or the characteristic function of a Gaussian

random variable with mean as µ and variance also as µ.

Thus in the limit µ → ∞, Gaussian distribution with mean and variance

both equal to µ is a good approximation to Poisson distribution with mean µ,

see Fig. 2.

3.9 Gaussian

A Gaussian of mean µ and variance σ2 is given by

G(x) =
1

σ
√

2π
exp

[
−(x− µ)2

2σ2

]
. (3.37)

The characteristic function is given by the Fourier transform formally ex-

pressed as G̃(k) =
∫+∞

−∞
dx exp(−ikx)G(x). The integral can be worked out,
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and I leave it as an exercise. We get, G̃(k) = exp [−ikµ − k2σ2/2] . Consider

a Gaussian of mean zero and variance σ2. It is given by

g(x) =
1

σ
√

2π
exp

[
−1

2

x2

σ2

]
. (3.38)

The width of the Gaussian distribution is 2σ. The Fourier transform of g(x)

is denoted g̃(k) and is given by

g̃(k) = exp
[
−1

2
k2σ2

]
. (3.39)

The Fourier transform is also a Gaussian with zero mean and standard devi-

ation 1/σ2. The width of g̃(k) is 2/σ. The product of the width of g(x) and

the width of its Fourier transform g̃(k) is 4.

If g(x) is sharply peaked then its Fourier transform g̃(k) will be broad

and vice versa.
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