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Maxwell’s Mischief

2.1 Experiment and Outcomes

Toss a coin : You get either "Heads" or "Tails". The experiment has two

outcomes. Consider tossing of two coins. Or equivalently toss a coin twice.

There are four outcomes : An outcome is an ordered pair. Each entry in the

pair is drawn from the set {H, T}.

We can consider, in general, tossing of N coins. There are 2N outcomes. Each

outcome is an ordered string of size N with entries drawn from the set {H, T}.

Roll a die : You get one of the six outcomes :

{
• ;

•

•

;

•

•

•

;

• •

• •

;

• •

•

• •

;

• • •

• • •

}

Consider throwing of N dice. There are then 6N outcomes. Each outcome is

an ordered string of N entries drawn from the basic set of six elements given

above.
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Select randomly an air molecule in this room and find its position

and momentum : Consider the air molecule to be a point particle. In

classical mechanics, a point particle is completely specified by its three position

(q1, q2, q3) and three momentum (p1, p2, p3) coordinates. An ordered set of six

numbers

{q1, q2, q3, p1, p2, p3}

is the outcome of the experiment. A point in the six dimensional phase space

represents an outcome of the experiment or the microstate of the system of

single molecule. We impose certain constraints e.g. the molecule is always

confined to this room. Then all possible strings of six numbers, consistent

with the constrains, are the outcomes of the experiment.

2.2 Sample space and events

The set of all possible outcomes of an experiment is called the sample space.

Let us denote it by the symbol Ω.

• Ω = {H, T} for the toss of a single coin.

• Ω = {HH, HT, TH, TT} for the toss of two coins.

A subset of Ω is called an event. Let A ⊂ Ω denote an event. When you

perform the experiment if you get an outcome that belongs to A then we say

the event A has occured.

For example consider tossing of two coins. Let event A be described by the

statement that the first toss is H . Then A consists of the following elements:

{HH, HT}.

The event corresponding to the roll of an even number in a dice, is the
subset

{
•

•

;

• •

• •

;

• • •

• • •

.

}
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2.3 Probabilities

Probability is defined for an event. What is the probability of the event {H}
in the toss of a coin ? One-half. This would be your immediate response. The

logic is simple. There are two outcomes : "Heads" and "Tails". We have no

reason to believe why should the coin prefer "Heads" over "Tails" or vice versa.

Hence we say both outcomes are equally probable. What is the probability

of having at least one "H" in a toss of two coins ? The event corresponding

this statement is {HH, HT, TH} and contains three elements. The sample

size contains four elements. The required probability is thus 3/4. All the

four outcomes are equally probable 1. Then the probability of an event is the

number of elements in that event divided by the total number of elements in

the sample space. For e.g., the event A of rolling an even number in a game

of dice, P (A) = 3/6 = 0.5. The outcome can be a continuum. For example,

the angle of scattering of a neutron is a real number between zero and π. We

then define an interval (θ1, θ2), where 0 ≤ θ1 ≤ θ2 ≤ π, as an event. A

measurable subset of a sample space is an event.

1Physicists have a name for this. They call it the axiom (or hypothesis or assumption) of
Ergodicity. Strictly ergodicity is not an assumption; it is absence of an assumption required
for assigning probabilities to events.
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2.4 Rules of probability

The probability p that you assign to an event, should be obey the following

rules.

p ≥ 0

p(A ∪ B) = p(A) + p(B) − p(A ∩ B)

p(φ) = 0 p(Ω) = 1 (2.1)

In the above φ denotes a null event and Ω, a sure event.

How does one assign probability to an event ?

Though this question does not bother the mathematicians, the physicists

should worry about this2. They should find the right way to assign probabil-

ities to get the phenomenon right. We can say that the subject of statistical

mechanics mainly deals with finding the right way to characterize a micro

state, the sample space, the events and the assigning of probabilities to the

events, depending on the system and phenomenon under investigation.

2.5 Random variable

The next important concept in probability theory is random variable , denoted

by the symbol x = X(ω) where ω denotes an outcome and x a real number.

Random variable is a way of stamping an outcome with a number : Real

number, for a real random variable. Integer, for an integer random variable.

2Maxwell and Boltzmann attached probabilities to events in some way; we got Maxwell-
Boltzmann statistics.

Fermi and Dirac had their own way of assigning probabilities to Fermions e.g. electrons,
occupying quantum states. We got Fermi-Dirac statistics.

Bose and Einstein came up with their scheme of assigning probabilities to Bosons, popu-
lating quantum states; and we got Bose-Einstein statistics.
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Complex number, for a complex random variable3. Thus the random variable

x = X(ω) is a set function.

Consider a continuous random variable x = X(ω). We define a probability

density function f(x) by

f(x)dx = P (ω|x ≤ X(ω) ≤ x + dx) (2.2)

In other words f(x)dx is the probability of the event (measurable subset) that

contains all the outcomes to which we have attached a real number between x

and x + dx.

Now consider a continuous random variable defined between a to b with

a < b. We define a quantity called the "average" of the random variable x as

µ =
∫ b

a
dx x f(x).

µ is also called the mean, expectation, first moment etc.

Consider a discrete random variable n, taking values from say 0 to N .

Let P (n) define the discrete probability. We define the average of the random

variable as

µ =
N∑

n=0

n P (n).

But then, we are accustomed to calculating the average in a different

way. For example I am interested in knowing the average marks obtained

by the students in a class, in the last mid-semester examination. How do I

calculate it ? I take the marks obtained by each of you, sum them up and

divide by the total number of students. That is it. I do not need notions like

probabilities, probability density, sum over the product of the random variable

and the corresponding probability, integration of the product of the continuous

3In fact, we stamped dots on the faces of die; this is equivalent to implementing the idea
of an integer random variable : attach an integer between one and six to each outcome.

For a coin, we stamped "Heads" on one side and "Tails" on the other. This is in the spirit
of defining a random variable; we have stamped figures instead of numbers.
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random variable and its probability density function etc.

Historically, before Boltzmann and Maxwell, physicists had no use for

probability theory in their work. Newton’s equations are deterministic. There

is nothing chancy about a Newtonian trajectory. We do not need probabilistic

description in the study of electrodynamics described by Maxwell equations;

nor do we need probability to comprehend and work with Einstein’s relativity

- special or general.

However mathematicians had developed the theory of probability as an

important and sophisticated branch of mathematics.

It was Ludwig Eduard Boltzmann who brought, for the first time, the idea

of probability into physical sciences; he was championing the cause of kinetic

theory of heat and atomic theory of matter. Boltzmann transport equation is

the first ever equation written for describing the time evolution of a probability

distribution.

2.6 Maxwell’s mischief : Ensemble

However, Maxwell, had a poor opinion about a physicist’s ability to com-

prehend mathematicians’ writings on probability theory, in general, and the

meaning of average as an integral over a probability density, in particular.

After all, if you ask a physicist to calculate the average age of a student

in the class, he’ll simply add the ages of all the students and divide by the

number of students.

To be consistent with this practice, Maxwell proposed the notion of an

ensemble of outcomes of an experiment (or an ensemble of realisations of a

random variable). Let us call it Maxwell ensemble 4.

4Later we shall generalise the notion of Maxwell ensemble and talk of ensemble as a
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Consider a collection of a certain number of independent realisations of

the toss of a single coin. We call this collection a Maxwell ensemble if it it

obeys certain conditions, see below.

Let N denote the number of elements in the ensemble. Let n1 denote the

number "Heads" and n2 number of ’Tails". We have n1 + n2 = N . If n1 = Np,

and hence n2 = Nq, then we say the collection of outcomes constitutes a

Maxwell ensemble.

Thus an ensemble holds information about the outcomes of the experiment

constituting the sample space; it also holds information about the probability

of each outcome. The elements of an ensemble are drawn from the sample

space; however each element occurs in an ensemble as often as to reflect cor-

rectly its probability.

For example consider an experiment of tossing a p-coin5 with p = 0, 75;

then a set of four elements given by {H, H, H, T} is a candidate for an ensem-

ble underlying experiment. . A set of eight elements {H, H, H, H, H, H, T, T }
is also an equally valid ensemble for this experiment. Thus the size of an en-

semble is somewhat arbitrary. If the number of times each outcome occurs in

the ensemble is consistent with its probability it would suffice.

2.7 Calculation of probabilities from an en-

semble

Suppose we are given the following ensemble : {H, T, H, H, T}. By looking at

the ensemble, we can conclude that the sample space contains two outcomes

{H, T}.

We also find that the outcome H occurs thrice and T occurs twice. Hence

collection identical copies of a macroscopic system. We shall call it a Gibbs ensemble
5a p-coin is one for which the probability of ’Heads’ is p and that of the ’Tails’ is q = 1−p.
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We also conclude that the probability of H is 3/5 and that of T is 2/5.

2.8 Construction of ensemble from probabili-

ties

We can also do the reverse. Given the outcomes and their probabilities, we

can construct an ensemble. Let ni denote the number of times an outcome

i occurs in an ensemble. Let N denote the total number of elements of the

ensemble. Choose ni such that ni/N equals pi; note that we have assumed

that pi is already known.

2.9 Counting of the elements in events of the

sample space : Coin tossing

Consider tossing of N identical coins or tossing of a single coin N times. Let

us say the coin is fair. In other words P (H) = P (T ) = 1/2.

Let Ω(N) denote the set of all possible outcomes of the experiment. An

outcome is thus a string N entries, each entry being "H" or "T". The number of

elements of this set Ω(N) is denoted by the symbol, Ω̂(N). We have Ω̂(N) =

2N .

Let Ω(n1, n2; N) denote a subset of Ω(N), containing only those outcomes

with n1 ’Heads’ and n2 ’Tails’. Note n1 + n2 = N . How many outcomes are

there in the set Ω(n1, n2; N) ?

Let Ω̂(n1, n2; N) denote the number of elements in the event Ω(n1, n2; N).

In what follows I shall tell you how to derive an expression6 for Ω̂(n1, n2; N).

6I remember I have seen this method described in a book on Quantum Mechanics by
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Take one outcome belonging to the event Ω(n1, n2; N). There will be

n1 ’Heads’ and n2 ’Tails" in that outcome . Imagine for a moment that

all these ’Heads’ are distinguishable. If you like, you can label them as

H1, H2, · · · , Hn1. Carry out permutation of all the ’Heads’ and produce

n1! new configurations. From each of these new configurations, produce n2!

configurations by carrying out the permutations of the n2 ’Tails’. Thus from

one outcome belonging to Ω(n1, n2; N), we have produced n1! × n2! new con-

figurations. Repeat the above for each element of the set Ω(n1, n2; N), and

produce Ω̂(n1, n2; N)n1!n2! configurations. A moment of thought will tell you

that this number should be the same as N !. Therefore

Ω̂(n1, n2; N) × n1! × n2! = N !

Let us work out an example explicitly to illustrate the above. Consider

tossing of five coins. There are 25 = 32 outcomes/microstates listed below.

The number in the brackets against each outcome denotes the number of

"Heads" in that outcome.

1. H H H H H (5)

2. H H H H T (4)

3. H H H T H (4)

4. H H H T T (3)

5. H H T H H (4)

6. H H T H T (3)

7. H H T T H (3)

8. H H T T T (2)

9. H T H H H (4)

10. H T H H T (3)

11. H T H T H (3)

12. H T H T T (2)

13. H T T H H (3)

14. H T T H T (2)

15. H T T T H (2)

16. H T T T T (1)

17. T H H H H (4)

18. T H H H T (3)

19. T H H T H (3)

20. T H H T T (2)

20. T H T H H (3)

21. T H T H T (2)

22. T H T T H (2)

23. T H T T T (1)

25. T T H H H (3)

26. T T H H T (2)

27. T T H T H (2)

28. T T H T T (1)

29. T T T H H (2)

30. T T T H T (1)

31. T T T T H (1)

32. T T T T T (0)

The outcomes numbered 4, 6, 7, 10, 11, 13, 18, 19, 20, 25 are the ones

with three "Heads" and two "tails"). These are the elements of the event

Ω(n1 = 3; n2 = 2; N = 5).

Take outcome No. 4. Label the three heads as H1, H2 and H3. Carry out

Gasiorowicz. Check it out
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permutations of the three "Heads" and produce 3! = 6 elements. These are

(4) H H H T T

H1 H2 H3 T T

H1 H3 H2 T T

H2 H1 H3 T T

H2 H3 H1 T T

H3 H1 H2 T T

H3 H2 H1 T T

Take an element from the above set. Label the ’Tails’ as T1 and T2. Carry

out permutation of the ’Tails’ and produce 2! = 2 elements. Do this for each

of the above six elements.

Thus from the outcome No, 4, we have produced 3! × 2! = 12 outcomes,

listed below.

(4) H H H T T

H1 H2 H3 T1 T2

H1 H2 H3 T2 T1

H1 H3 H2 T1 T2

H1 H3 H2 T2 T1

H2 H1 H3 T1 T2

H2 H1 H3 T2 T1

H2 H3 H1 T1 T2

H2 H3 H1 T2 T1

H3 H1 H2 T1 T2

H3 H1 H2 T2 T1

H3 H2 H1 T1 T2

H3 H2 H1 T2 T1

Repeat the above exercise on the outcomes numbered 6, 7, 10, 11, 13, 18,

19, 20, 25. Table below depicts the results for outcome no. 6.

(6) H H T H T

H1 H2 T1 H3 T2

H1 H2 T2 H3 T1

H1 H3 T1 H2 T2

H1 H3 T2 H2 T1

H2 H1 T1 H3 T2

H2 H1 T2 H3 T1

H2 H3 T1 H1 T2

H2 H3 T2 H1 T1

H3 H1 T1 H2 T2

H3 H1 T2 H2 T1

H3 H2 T1 H1 T2

H3 H2 T2 H1 T1

Thus we produce Ω̂(n1 = 3, n2 = 2; N = 5) × n1! × n2! outcomes.

This number is just the number of permutations of N = 5 objects labelled

H1, H2, H3, T1, T2 and it equals N !. Therefore,

Ω̂(n1 = 3, n2 = 2; N = 5) =
5!

3!2!
= 10



2.10. GIBBS ENSEMBLE 11

Ω̂(n1, n2; N) is called the binomial coefficient7

2.10 Gibbs ensemble

Following Gibbs, we can think of an ensemble as consisting of large number

of identical mental copies of a macroscopic system 8. All the members of an

ensemble are in the same macro state9. However they can be in different micro

states. Let the micro states of the system under consideration, be indexed by

{i = 1, 2, · · · }. The number of elements of the ensemble in micro state j

divided by the size of the ensemble equals t the probability of the system to

be in micro state j. It is intuitively clear that the size of the ensemble should

be large (→ ∞) so that it can capture exactly the probabilities of different

micro states of the system10. Let me elaborate on this issue, see below.

2.11 Why should a Gibbs ensemble be large ?

What are the values of n1 and n2 for which Ω̂(n1, n2; N) is maximum11 ?

7We have the binomial expansion given by

(a + b)N =
∑

{n1,n2}

⋆ N !

n1!n2!
an1bn2

The sum runs over all possible values of {n1, n2}. The superscript ⋆ on the summation
sign should remind us that only those values of n1 and n2 consistent with the constraint
n1 + n2 = N are permitted.

8For example the given coin is a system. Let p denote the probability of "Heads" and
q = 1 − p the probability of "tails". The coin can be in a micro state "Heads" or in a micro
state "Tails".

9This means the values of p and q are the same for all the coins belonging to the ensemble.
10If you want to estimate the probability of Heads in the toss of a single coin experimen-

tally then you have to toss a large number of identical coins. Larger the size of the ensemble
more (statistically) accurate is your estimate .

11you can find this in several ways. Just guess it. I am sure you would have guessed
the answer as n1 = n2 = N/2. We know that the binomial coefficient is largest when
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It is readily shown that for n1 = n2 = N/2 the value of Ω̂(n1, n2; N)

is maximum. Let us denote this number by the symbol Ω̂m(N). We have,

Ω̂m(N) = Ω̂(n1 = N/2, N2 = n/2; N).

Thus we have

Ω̂(N) =
∑

{n1,n2}

⋆ N !

n1! n2!
= 2N ; (⋆ ⇒ n1 + n2 = N) (2.3)

Ω̂m(N) = Ω̂(n1 = n2 = N/2; N) =
N !

(N/2)! (N/2)!
(2.4)

Let us evaluate Ω̂m(N) for large values of N . We employ Stirling’s first

approximation 12 : N ! = NN exp(−N) and get

Ω̂m(N) = =
NN exp(−N)

[(N/2)(N/2) exp(−N/2)]
2 = 2N (2.5)

n1 = n2 = N/2 if N is even, or when n1 and n2 equal the two integers closest to N/2 for N
odd. That is it.

If you are more sophisticated, take the derivative of Ω̂(n1, n2; N) with respect to n1 and
n2 with the constraint n1 + n2 = N , set it zero; solve the resulting equation to get the value
of N for which the function is an extremum. Take the second derivative and show that the
extremum is a maximum.

You may find it useful to take the derivative of logarithm of Ω̂(n1, n2; N); employ Stirling
approximation for the factorials : ln(m!) = m ln(m) − m for large m. Stirling approxima-
tion to large factorials is described in the next section.

You can also employ any other pet method of yours to show that, for n = N/2, the

function Ω̂(n; N) is maximum.
12First Stirling Approximation : N ! ≈ NN exp(−N).

We have,

N ! = N × (N − 1) × · · · × 3 × 2 × 1

ln N ! = ln 1 + ln 2 + ln 3 + · + ln N

=

N∑

k=1

ln(k) ≈
∫ N

1

ln x dx = (x ln x − x)
∣∣N
1

= N ln N − N − 1

≈ N ln N − N

N ! ≈ NN exp(−N)
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The above implies that almost all the outcomes of the experiment belong to the

event with equal number of ’Heads’ and ’Tails’. The outcomes with unequal

number of ’Heads’ and ’Tails’ are so overwhelmingly small that the difference

falls within the small error arising due to the first Stirling approximation.

For estimating the tiny difference between Ω̂(N) and Ω̂m(N), let us employ

the second Stirling approximation13 : N ! = NN exp(−N)
√

2πN and get

Ω̂m(N) = Ω̂(n1 = n2 = N/2; N) = 2N ×
√

2

πN
.

Thus we have,

Ω̂m(N)

Ω̂(N)
=

√
2

πN
(2.6)

∝ 1√
N

(2.7)

13A better approximation to large factorials is given by Stirling’s second formula : N ! ≈
NN exp(−N)

√
2πN

We have

Γ(N + 1) = N ! =

∫ ∞

0

dx xN e−x =

∫ ∞

0

dx eF (x)

F (x) = N ln x − x

F ′(x) =
N

x
− 1 ; F ′′(x) = − N

x2

Set F ′(x) = 0; this gives x⋆ = N . At x = x⋆ the function F (x) is maximum. (Note :
F ′′(x = x⋆) is negative). Carrying out Taylor expansion and retaining only upto quadratic
terms, we get,

F (x) = F (x⋆) +
(x − x⋆)2

2
F ′′(x = x⋆) = N ln N − N − (x − N)2

2N

We have,

N ! =

∫ ∞

0

dx eF (x) = NNe−N

∫ ∞

0

dx exp

[
− (x − N)2

2N

]

= NNe−N
√

N

∫ ∞

−
√

N

dx exp(−x2/2)

∼
N→∞ NNe−N

√
2πN
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Let us define S(Ω(n1, n2; N)) = ln Ω̂(n1, n2; N) as entropy of the event

Ω(n1, n2; N). For n1 = n2 = N/2 we get an event with largest entropy. Let us

denote it by the symbol SB(N).

Let SG = S(Ω(N)) = N ln 2 denote the entropy of the sure event. It

is the logarithm of the number of outcomes of the experiment of tossing N

independent and fair coins.

We find, for large N ,

SB = S(Ω(n1 = n2 = N/2; N)) = N ln 2 − 1

2
ln N = SG − 1

2
ln N (2.8)

The entropy of the sure event is of the order of N ; the entropy of the event with

N/2 "Heads" and N/2 ’Tails" is less by an extremely small quantity of the order

of ln(N). Hence when you toss a very large number of coins independently

you will get almost always N/2 ’Heads’ and N/2 ’Tails".

For example take a typical value for N = 1023. We have SG = 0.69 × 1023

and SB = 0.69 × 1023 − 24.48.

Note that only when N is large, we have SB equals SG. It is precisely

because of this, we want the number of elements to be large, while constructing

a Gibbs ensemble. We should ensure that all the micro states of the system

are present in the ensemble in proportions, consistent with their probabilities.

For example I can simply toss N independent fair coins just once and

if N is large then I am assured that there shall be (N/2) ± ǫ ’Heads’ and

(N/2) ∓ ǫ ’Tails’, where ǫ is negligibly small : of the order of
√

N . Consider

the probability for random variable n to take values outside the interval

(
N(1 − ǫ)

2
,

N(1 + ǫ)

2

)

where ǫ is an arbitrarily small number. Let us denote this probability as

Pout(N). One can show that in the limit N → ∞, the probability Pout(N)

goes to zero.
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Take ǫ = 1/100 and calculate Pout(N) for N = 103, 104, 105, 106, and

108. The table below depicts the results, and we see that Pout nearly zero for

large N .

ǫ = 1/100; Pout =

N P

(
N
2

(1 − ǫ) ≤ n ≤ N
2

(1 + ǫ)

)

103 0.752

104 0.317

105 0.002

106 1.5 × 10−23

107 2.7 × 10−2174

In statistical mechanics we consider a macroscopic system which can be

in any of its numerous microscopic states. These micro states are analogous

to the outcomes of an experiment. In fact the system switches spontaneously

from one micro state to another when in equilibrium. We can say the set of all

micro states constitute a micro state space which is the analogue of the sample

space. We attach a real number representing the numerical value of a property

e.g. energy, to each micro state. This is analogous to random variable. We

can define several random variables on the same micro state space to describe

different macroscopic properties of the system.
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