Q1. If the decay rate of $\Delta^{++}=\Gamma^{++}$what is the decay rate of Δ^{+}?
Solution: In the decay isospin is conserved. Since $I=3 / 2$ for the Δ the final state can only be $I=3 / 2$. The decay Of Δ^{+}can occur through the channels

$$
\Delta^{=} \rightarrow p+\pi^{0}
$$

and

$$
\Delta^{=} \rightarrow n+\pi^{+}
$$

We have and

$$
\begin{aligned}
\mid n \pi^{+}> & =\left(\frac{1}{3}\right)^{1 / 2}\left|I=3 / 2, I_{z}=1 / 2>+\left(\frac{2}{3}\right)^{1 / 2}\right| I=1 / 2, I_{z}=1 / 2> \\
\mid p \pi^{0}> & =\left(\frac{2}{3}\right)^{1 / 2}\left|I=3 / 2, I_{z}=1 / 2>+\left(\frac{1}{3}\right)^{1 / 2}\right| I=1 / 2, I_{z}=1 / 2>
\end{aligned}
$$

Thus

$$
\begin{aligned}
& <n \pi^{+}|M| \Delta^{+}>=\left(\frac{1}{3}\right)^{1 / 2}<I=3 / 2, I_{z}=1 / 2|M| \Delta^{+}> \\
& <p \pi^{0}|M| \Delta^{+}>=\left(\frac{2}{3}\right)^{1 / 2}<I=3 / 2, I_{z}=1 / 2|M| \Delta^{+}>
\end{aligned}
$$

Hence

$$
\begin{aligned}
\Gamma^{+}\left(n \pi^{+}\right) & =\frac{1}{3} \Gamma^{++} \\
\Gamma^{+}\left(p \pi^{0}\right) & =\frac{2}{3} \Gamma^{++}
\end{aligned}
$$

Total rate is

$$
\Gamma^{+}=\Gamma^{+}\left(n \pi^{+}\right)+\Gamma^{+}\left(p \pi^{0}\right)=\Gamma^{++}
$$

2. A particle X of mass M_{X} decays to two paricls $\mathrm{Y}\left(\operatorname{mass} M_{Y}\right)$. The decay distribution is isotropic in the rest frame of X . Consider a frame in which X is travelling with energy E_{X} along the 3rd direction. Show that the
energy distribution in the moving frame is constant- that is if $d N_{Y}$ is the number emitted in the energy range E_{Y} to $E_{Y}+d E_{Y}$ show that

$$
\frac{d N_{Y}}{d E_{Y}}=\text { constant }
$$

and

$$
\frac{\gamma}{2}\left[M_{X}-\beta \sqrt{\left(M_{X}^{2}-4 M_{Y}^{2}\right)}\right]<E_{Y}<\frac{\gamma}{2}\left[M_{X}+\beta \sqrt{\left(M_{X}^{2}-4 M_{Y}^{2}\right)}\right.
$$

where $\gamma=E_{X} / M_{X}$ and $\beta=\sqrt{\left(E_{X}^{2}-M_{X}^{2}\right)} / E_{X}$
Solution:
Let the momentum four vector of Y in the rest frame of X be $\left(E_{Y}(r), P_{Y}(r) \sin (\theta), 0, P_{Y}(r) \cos (\theta)\right.$ θ is the angle made by the momentum vector of Y in the rest frame of X. Here $E_{Y}(r)=m_{X} / 2 ; p_{Y}(r)=\left(m_{X}^{2} / 4-m_{Y}^{2}\right)^{1 / 2}$. We can get the energy in the frame in which X is moving by a Lorentz transformation

$$
E_{Y}=\gamma\left(E_{Y}(r)+\beta P_{Y}(r) \cos (\theta)\right)
$$

where $\gamma=E_{X} / m_{X} ; \beta=\left(E_{X}^{2}-m_{X}^{2}\right)^{1 / 2} / E_{X}$. This implies (using $E_{Y}(r)=$ $m_{X} / 2 ; p_{Y}(r)=\left(m_{X}^{2}-4 m_{Y}^{2}\right)^{1 / 2} / 2$

$$
\frac{\gamma}{2}\left[M_{X}-\beta \sqrt{\left(M_{X}^{2}-4 M_{Y}^{2}\right)}\right]<E_{Y}<\frac{\gamma}{2}\left[M_{X}+\beta \sqrt{\left(M_{X}^{2}-4 M_{Y}^{2}\right)}\right.
$$

Thus $\frac{d E_{Y}}{d \cos (\theta)}=\gamma \beta P_{Y}$ and

$$
\frac{d N}{d E_{Y}}=\frac{d N_{Y}}{d \cos (\theta)} \frac{d \cos (\theta)}{d E_{Y}}=\frac{1}{\gamma \beta} \times \text { constant }
$$

as $\frac{d N_{Y}}{d \operatorname{dcos}(\theta)}$ is a constant for isotropic distribution.
Q3. A ρ^{0} meson is in the rest frame in the eigenstate of spin operator S_{3} with eigenvalue 0 . Write the matrix element for the decay of ρ^{0} to $\pi^{+} \pi^{-}$. Find the angular distribution of the decay products. (You can use the matrix element

$$
M=g \epsilon^{\mu}\left(p_{\pi^{+}}-p_{\pi^{-}}\right)_{\mu}
$$

where g is a constant.) ϵ^{μ} represents the polarization vector of ρ^{0} meson and $p_{\pi^{+}}, p_{\pi^{-}}$are the four momenta of the π^{+}, π^{-}respectively.

Solution:

In the notation for the spin operators $\left(S_{i}\right)_{j k}=-i \epsilon i j k$ we have the eigenvector for S_{3} with eigenvalue zero is

$$
\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Thus $\epsilon^{0}=\epsilon^{1}=\epsilon^{2}=0 ; \epsilon^{3}=1$. the matrix element for ρ - decay becomes

$$
M=g\left(p_{\pi^{+}}-p_{\pi^{-}}\right)_{3}=-2 g p_{\pi^{+}}^{3}=-2 g\left|p_{\pi^{+}}\right| \cos (\theta)
$$

where $\cos (\theta)$ is the angle with restect to the spin fo the ρ. We are in the rest frame of ρ and so $p_{\pi^{+} 3}=-p_{\pi^{-} 3}$. The angular distribution $\propto|M|^{2} \propto \cos ^{2}(\theta)$

