Phy 523 PARTICLE PHYSICS
PROBLEM SHEET X- SOLUTIONS

46. Write down the matrix element for the processes ( include normali-
sation and momentum conservation) for

Ve +€ —U,+e
vVo+e —U,+e
SOLUTION: Matrix element for

Ve(P1) + e (d1) = ve(P2) + € (q2)

It occurs through an exchange of (a) W~ and (b) Z°

Feynman diagrams for v, + e~ — v, + e~
The factors at the vertices are given in the parenthesis:
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The matrix elements are for (a)
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=p1—p2, Ay = (1 — 4sin2(0)),A,4 =1

Matrix element for the reaction 7e(qi) + € (p1) — Te(qz2) + €~ (pP2) goes

through an exchange of W~ and Z° as shown in the figure.



The matrix element is given by ( the various factors for the vertices is
written earlier)
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where r = p; + ¢; and
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N is the same as before. The factor —N occurs rather than N is because an
antiparticle ( in this case an antineutrino)is present in the initial state.
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47 Write down the matrix element for( include normalisation and mo-
mentum conservation)
e tu—e +u

Ve +d—u+e”
SOLUTION: The process e (p1) + u(q1) — e~ (p2) + u(qz) occurs through

a v and a Z° exchange between the electron and the u-quark. The vertex
u—u— Z°is given by

—2ie

. e—e—ry vertex is iey” and the u —u — 7 vertex is =2**y* where e = gsin(0)

Thus
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and
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M,y(Z°—exchange) = 166(12(9)]\[(2%)464@14_% —P2—q2)Ue(P2) (Ave V" —Aae Y75 ) te(p1)
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Here ¢ = p; — p2, Ave = 1 — 4sin®(0), Ay = 1 — 83”32(9),%1,“, = A, = 1.
FurtherN = 1/(16p9p3q0q))'/?
The process ve(p1) + d(q1) — e~ (p2) + u(qz) goes through an exchange
of W-meson.
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Here g = p1 — pa, N = (16p7p3qtas)'/*.
48. Calculate the decay rate for (a) Z° — v, + v, (b) Z° — e™ + €.

SOLUTION: Before we consider specific decays of Z° or W- bosons let
us calculate the decay rate for a spin -1 particle X to two fermions denoted
by a and b. We assume the a and b to be massless ( As both Z- and W-
bosons are in the range of 90-80 GeV and the leptons and quarks are very
much lighter, the heaviest being a few GeV). We write the matrix element
as

M = N%(27r)454(]3 —q1 — ¢2) X" Ua(q1) (Avvu — Aavu5)05(g2)

where p is a phase and K = 2/2 for W-decay and K = 4cos(#) for Z-decay.P
is the four momentum of X and ¢y, ¢» the momenta of a and b respectively.
N = (8P%V¢3)'/? We consider X- to be unpolarised and so average over all
the polarisation states of X. The spins of fermions is to be summed as no
polarisation of spin is detected. Thus ( average of initial spin is denoted by



a |M|?), we get for the decay rate ( the initial wave function is normalised
to unity)
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P:lf ~ does not contribute. This is seen by noting P = ¢; + ¢»
X

and using 41 41 = ¢i. Similarly £ 4 = 0 This leads to ( using?r( g1, /

227"5) = 0)
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We perform the trace using the identities v, 47" = =2 ho, V5 M2V ==
=2 foand Tr( 41 f2) = 8q1-q2, Tr (s 41 f2) = 0. We also use the J- function
to integrate d3g, and obtain
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Squaring the four momentum relation P = g1 +¢gs and using the masslessness
of a and b we get m% = 2q;.qz. Thus
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where we have assumed X- is at rest and used P° = mx. We also have, as
we are in the rest frame of X, |¢i| = |¢3|. Further, as a and b are massless,
71| = 3] = ¢¥ = ¢8.The argument of the - function becomes (mx — 2¢?).
The integration over |¢i| is the same as over ¢. This leads to

2

g dth 2 2 2
I'= / A2+ A2 (2
BF(Q (271')28 X( v + a)( mX)

. We have used the identity [ dzd(az) = |1/a| to get a factor of 1/2 when
perfoming the integral over ¢¥. Integration over the angular variables d€);
gives 4m. thus we finally get
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For Z° — v + Ve, mx = myz, A, = Ay = 1, K? = 16c0s*() giving

g2

N2 —vtm)= 967 cos(0)

mgz
ForZ® — e™ +e™ K? = 16co0s?(0), A, = (1 — 4sin?(0)), A, = 1 leading to
2

T(Z° — et +e7) = 19%5082@(1(1 — 4sin2(0))% + 1)

49. Calclate the decay rate for (a) W~ — e~ 4+ v, (b) W™ —u+d
SOLUTION: For W~ — e~ + [ie, we have K? =8, A, = A—a = 1. This

gives
2

(W™ — e +nu,.) = %mw
T

For W~ — d + 1, we have K? = 8, A, = A, = 1. Further we have to
take into the three colours of the quarks. This gives the decay rate as
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(W™ —d+a) = é?mw

50. Calculate the total cross section for the reaction in the c.m frame

Ve+d—u+e”
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SOLUTION: We consider the reaction ve(p1) + d(q1) — e (p2) + u(qz)
The reaction occurs through an exchange of W-boson between the leptons
and the quarks. The matrix element is given by

_92 _ _nyu —l— <i:€:>
M = N @) St np-) (o 1) ) | —
q- — My

tu(q2)7" (1 = 75)ua(qr)

where ¢* = (py — p1)*. As before the term ¢*¢"*/m%, does not contribute in
the massless limit of quarks and leptons.

We proceed to evaluate |M|?/VT, averaging over the initial spins and
summing over final spins.( we will discuss the averaging and summing over
colour later)
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This can be simplified using the trace relations

Tr oy (1 —=75) pi(1+75)77] = 2T poy* (1 — 35) 177

= 8(pap] + P3Py — pr-pan’ + i€a/\60p2apw)
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= 8(¢orq1o + Q20@1r — ¢1-G2ro + 1€p20005G)
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(@G0 + ©o@ir — G1-©Mro + €200 054T)

Using the identity e**e,z,e = —2(565 — 0267) ,and noticing the sym-
metry of each term with respect to A\, 0 we get
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Using the fact that flux is 2 in the centre of mass frame we get

d3Q2d3p2 N gt
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Integrating over d3p2 using the d-function and simplifying gives

gt / By Aq.p1ge-pe 5(
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we define the square of the centre of mass energy as ( remebering all the

leptons and quarks are considered as massless) s = (¢ + p1)? = 2q1.p1 =

(g2 + p2)* = 2qo.p2 = 4(a))? = 4(a2)? = 4(n))? = 4(p3)>. Further ¢* =

(1 — )% = —2q1.¢2 = —2(q?)*(1 — cos(h)) where 6 is the angle between ¢

and ¢. Substituting these and remembering the integration over d-function
gives a factor of 1/2, we get

@) +p) — q3 — p)
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dQ = dcos(Q)dqb

We can integrate over ¢ to get a factor 27. The integration over cos(f) can
also be performed using trignometric functions. We will take the low energy
limit and assume s << m3, when there is no dependence on 6 as the factor
(s(1—cos(#))/4—m3,)* becomes my;, and the integration cos(f) gives a factor
2 Putting all this together we finally have
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We have not included the colour factor - in an actual scattering the quarks
are not in the free state but form a part of hadron which do not carry colour.
Thus we need to average over the three colours in the initial state , leading
to a factor of 1/3. As the colour of each quark is preseved we have three
possibilities and that gives a factor of three. Hence the colour factor is unity.



