Phy 523 PARTICLE PHYSICS SOLUTIONS PROBLEM SHEET I

1.Consider a particle $\mathrm{A}\left(\operatorname{mass} M_{A}\right)$ decaying to two particles B, C (masses M_{B}, M_{C}). Find the momentum of particle B in the (a) rest frame of A and (b) in a frame in which the momentum of A is $\overrightarrow{P_{A}}=\left(0,0, P_{A}\right)$ and the momentum of B makes an angle θ with respect otA.

Solution:
(a) In the rest frame of A the four momenta of the three particles can be written as $P_{A}^{\mu}=\left(m_{A}, \overrightarrow{0}\right), P_{B}^{\mu}=\left(E_{B}(r), \vec{P}_{B}(r)\right), P_{C}^{\mu}=\left(E_{C}(r), \vec{P}_{C}(r)\right)$ Conservation of four momentum leads to

$$
P_{A}^{\mu}=P_{B}^{\mu}+P_{C}^{\mu}
$$

or

$$
P_{A}^{\mu}-P_{B}^{\mu}=P_{C}^{\mu}
$$

Squaring

$$
\begin{gathered}
\left(P_{A}^{\mu}-P_{B}^{\mu}\right)\left(P_{A \mu}-P_{B \mu}\right)=P_{C}^{\mu} P_{C \mu}=m_{C}^{2} \\
=m_{A}^{2}+m_{B}^{2}-2 P_{A}^{\mu} P_{B \mu}
\end{gathered}
$$

We have

$$
P_{A}^{\mu} P_{B \mu}=m_{A} E_{B}(r)
$$

Thus

$$
m_{A}^{2}+m_{B}^{2}-2 m_{A} E_{B}(r)=m_{C}^{2}
$$

or

$$
E_{B}(r)=\frac{m_{A}^{2}+m_{B}^{2}-m_{C}^{2}}{2 m_{A}}
$$

the momeentum of B is
$\left|\vec{P}_{B}(r)\right|=\left(E_{B}^{2}(r)-m_{B}^{2}\right)^{1 / 2}=\frac{\left(m_{A}^{4}+m_{B}^{4}+m_{C}^{4}-2 m_{A} m_{B}-2 m_{A} m_{C}-2 m_{B} m_{C}\right)^{1 / 2}}{2 m_{A}}$
$E_{B}(r),\left|\vec{P}_{B}(r)\right|$ refer to the energy and momentum of B at rest.
(b) Here choose
$P_{A}^{\mu}=\left(E_{A}, 0,0,\left|\vec{P}_{A}\right|\right), P_{B}^{\mu}=\left(E_{B},\left|\vec{P}_{B}\right| \sin (\theta) \cos (\phi),\left|\vec{P}_{B}\right| \sin (\theta) \sin (\phi),\left|\vec{P}_{B}\right| \cos (\theta)\right)$

$$
P_{C}^{\mu}=\left(E_{C}, \vec{P}_{A}-\vec{P}_{B}\right)
$$

Again

$$
\left(P_{A}^{\mu}-P_{B}^{\mu}\right)\left(P_{A \mu}-P_{B \mu}\right)=P_{C}^{\mu} P_{C \mu}=m_{C}^{2}
$$

or

$$
\begin{gathered}
m_{A}^{2}+m_{B}^{2}-2 P_{A}^{\mu} P_{B \mu}=m_{C}^{2} \\
m_{A}^{2}+m_{B}^{2}-m_{C}^{2}=2 P_{A}^{\mu} P_{B \mu}=2\left(E_{A} E_{B}-\left|\vec{P}_{A}\right|\left|\vec{P}_{B}\right| \cos (\theta)\right) \\
\frac{m_{A}^{2}+m_{B}^{2}-m_{C}^{2}}{2}=E_{A}\left(m_{B}^{2}+\left|\vec{P}_{B}\right|^{2}\right)^{1 / 2}-\left|\vec{P}_{A}\right|\left|\vec{P}_{B}\right| \cos (\theta)=m_{A} E_{B}(r) \\
\left(M_{A} E_{B}(r)+\left|\vec{P}_{A}\right|\left|\vec{P}_{B}\right| \cos (\theta)\right)^{2}=E_{A}^{2}\left(m_{B}^{2}+\left|\vec{P}_{B}\right|^{2}\right) \\
M_{A}^{2} E_{B}(r)^{2}+\left|\vec{P}_{A}\right|^{2}\left|\vec{P}_{B}\right|^{2} \cos (\theta)^{2}+2 M_{A} E_{B}(r)\left|\vec{P}_{A}\right|\left|\vec{P}_{B}\right| \cos (\theta)=E_{A}^{2} m_{B}^{2}+E_{A}^{2}\left|\vec{P}_{B}\right|^{2} \\
\left(E_{A}^{2}-\left|\vec{P}_{A}\right|^{2} \cos ^{2}(\theta)\left|\vec{P}_{B}\right|-2 m_{A}\left|\vec{P}_{A}\right| E_{B}(r) \cos (\theta)\left|\vec{P}_{B}\right|+E_{A}^{2} m_{B}^{2}-m_{A}^{2} E_{B}(r)^{2}=0\right.
\end{gathered}
$$

solving for $\left|\vec{P}_{B}\right|$ we get

$$
\begin{gathered}
\left|\vec{P}_{B}\right|=\frac{2 m_{A}\left|\vec{P}_{A}\right| E_{B}(r) \cos (\theta)}{2\left(E^{2}-\left|\vec{P}_{A}\right|^{2} \cos ^{2}(\theta)\right)} \\
\pm \frac{\left(4 m_{A}^{2}\left|\vec{P}_{A}\right|^{2} E_{B}(r)^{2} \cos ^{2}(\theta)-4\left(E_{A}^{2} m_{B}^{2}-m_{A}^{2} E_{B}^{2}(r)\right)\left(E_{A}^{2}-\left|\vec{P}_{A}\right|^{2} \cos ^{2}(\theta)\right)^{1 / 2}\right.}{2\left(E^{2}-\left|\vec{P}_{A}\right|^{2} \cos ^{2}(\theta)\right)}
\end{gathered}
$$

The -ve sign would give $\left|\vec{P}_{B}\right|<0$ as $\left|\vec{P}_{A}\right| \rightarrow 0$ and so we chose the + -ve sign. Simplifying the term inside the squareroot we get

$$
\begin{gathered}
4 m_{A}^{2}\left|\vec{P}_{A}\right|^{2} E_{B}(r)^{2} \cos ^{2}(\theta)-4\left(E_{A}^{2} m_{B}^{2}-m_{A}^{2} E_{B}^{2}(r)\right)\left(E_{A}^{2}-\left|\vec{P}_{A}\right|^{2} \cos ^{2}(\theta)\right) \\
=4 m_{A}^{2} E_{B}(r)^{2}\left(\left|\vec{P}_{A}\right|^{2} \cos ^{2}(\theta)+\left(E_{A}^{2}-\left|\vec{P}_{A}\right|^{2} \cos ^{2}(\theta)\right)-4 E_{A}^{2} m_{B}^{2}\left(E_{A}^{2}-\left|\vec{P}_{A}\right|^{2} \cos ^{2}(\theta)\right)\right. \\
=4 m_{A}^{2} E_{B}(r)^{2} E_{A}^{2}-4 E_{A}^{2} m_{B}^{2}\left(E_{A}^{2}-\left|\vec{P}_{A}\right|^{2} \cos ^{2}(\theta)\right) \\
=4 E_{A}^{2}\left(m_{A}^{2} E_{B}(r)^{2}-E_{A}^{2} m_{B}^{2}\right)+4 E_{A}^{2} m_{B}^{2}\left|\vec{P}_{A}\right|^{2} \cos ^{2}(\theta) \\
\left.=4 E_{A}^{2}\left(m_{A}^{2} E_{B}(r)^{2}-\left(\left|\vec{P}_{A}\right|^{2}+m_{A}^{2}\right) m_{B}^{2}\right)+4 E_{A}^{2} m_{B}^{2}\left|\vec{P}_{A}\right|^{2} \cos ^{2}(\theta)\right) \\
=4 E_{A}^{2}\left(m_{A}^{2}\left(E_{B}(r)^{2}-m_{B}^{2}\right)-\left|\vec{P}_{A}\right|^{2} m_{B}^{2}+m_{B}^{2}\left|\vec{P}_{A}\right|^{2} \cos ^{2}(\theta)\right) \\
=4 E_{A}^{2}\left(m_{A}^{2}\left|\vec{P}_{B}(r)\right|^{2}-m_{B}^{2}\left|\vec{P}_{A}\right|^{2} \sin ^{2}(\theta)\right.
\end{gathered}
$$

Thus

$$
\left|\vec{P}_{B}\right|=\frac{2 m_{A}\left|\vec{P}_{A}\right| E_{B}(r) \cos (\theta)+2 E_{A}\left(m_{A}^{2}\left|\vec{P}_{B}(r)\right|^{2}-m_{B}^{2}\left|\vec{P}_{A}\right|^{2} \sin ^{2}(\theta)\right)^{1 / 2}}{2\left(E_{A}^{2}-\left|\vec{P}_{A}\right|^{2} \cos ^{2}(\theta)\right)}
$$

2. Consider a particle A (mass M_{A}) decay to three particles B,C and D (masses M_{B}, M_{C} and M_{D}). Find the maximum and the minimum energy range for C in the rest frame of A .

Solution:
Conservation of energy and momentum demand

$$
\begin{gathered}
M_{A}=E_{A}+E_{B}+E_{C}=\left(m_{B}^{2}+\left|\vec{P}_{B}\right|^{2}\right)^{1 / 2}+\left(m_{C}^{2}+\left|\vec{P}_{C}\right|^{2}\right)^{1 / 2}\left(m_{D}^{2}+\left|\vec{P}_{D}\right|^{2}\right)^{1 / 2} \\
\vec{P}_{A}=0=\vec{P}_{B}+\vec{P}_{C}+\vec{P}_{D}
\end{gathered}
$$

We have to maximse E_{C} subject to the above conditions. Using the method of Langrange multipliers we consider the function

$$
F\left(\vec{P}_{B}, \vec{P}_{C}, \vec{P}_{D}\right)=E_{C}-\lambda\left(E_{B}+E_{C}+E_{D}\right)-\sigma^{i}\left(P_{B}^{i}+P_{C}^{i}-P_{D}^{i}\right.
$$

λ and $\sigma^{i} i=1,2,3$ are the Langrange multipliers. We can now treat $\vec{P}_{A}, \vec{P}_{B}, \vec{P}_{C}$ as independent variables. For a stationary solution

$$
\begin{gathered}
\frac{\partial F\left(\vec{P}_{A}, \vec{P}_{B}, \vec{P}_{C}\right)}{\partial P_{B}^{i}}=-\lambda \frac{P_{B}^{i}}{E_{B}}-\sigma^{i}=0 \\
\frac{\partial F\left(\vec{P}_{A}, \vec{P}_{B}, \vec{P}_{C}\right)}{\partial P_{C}^{i}}=1-\lambda \frac{P_{C}^{i}}{E_{C}}-\sigma^{i}=0 \\
\frac{\partial F\left(\vec{P}_{A}, \vec{P}_{B}, \vec{P}_{C}\right)}{\partial P_{D}^{i}}=-\lambda \frac{P_{D}^{i}}{E_{D}}-\sigma^{i}=0
\end{gathered}
$$

The above equations imply $\frac{P_{B}^{i}}{E_{B}}=\frac{P_{D}^{i}}{E_{D}}=\frac{\sigma^{i}}{\lambda}$. This means the velocity of B and D are the same and one can consider them as moving together. So we can treat the problem as a two body decay with A decaying to $(B+D)$ with a mass of $m_{B}+m_{D}$ and C. Thus

$$
E_{C}(\max)=\frac{m_{A}^{2}+m_{C}^{2}-\left(m_{B}+m_{D}\right)^{2}}{2 m_{A}}
$$

The minimum value of E_{C} is m_{C} when it is at rest with B and C taking away the energy $m_{A}-m_{C}$ and $\vec{P}_{B}+\vec{P}_{B}=0$.
3. Consider the scattering $A+B \rightarrow C+D$. Masses are $\left(M_{A}, M_{B}, M_{C}, M_{D}\right)$ respectively with $M_{C}+M_{D}>M_{A}+M_{D}$. Find the minimum energy needed for the particle A in order this reaction occurs (a) in the rest frame of B (b) in the centre of mass frame.

Solution: (a) We have the conservation law

$$
P_{A}^{\mu}+P_{B}^{\mu}=P_{C}^{\mu}+P_{D}^{\mu}
$$

Note that C and D can not be produced at rest in the rest frame of B as the initial three momentum of B is not zero and hence momentum of the final state can not be zero. We refer to this frame as the 'lab' frame In this frame we write

$$
\begin{gathered}
P_{A}^{\mu}=\left(E_{A}(l), 0,0, P_{A}\right) ; P_{B}^{\mu}=\left(m_{B}, 0,0,0\right) \\
\left(P_{A \mu}+P_{B \mu}\right)\left(P_{A}^{\mu}+P_{B}^{\mu}\right)=m_{A}^{2}+m_{B}^{2}+2 P_{A \mu} \cdot P_{B}^{\mu} \\
=m_{A}^{2}+m_{B}^{2}+2 m_{B} E_{A}(l)
\end{gathered}
$$

This also equals $\left(P_{C \mu}+P_{D \mu}\right)\left(P_{C}^{\mu}+P_{D}^{\mu}\right)=m_{C}^{2}+m_{D}^{2}+2 P_{C \mu} P_{D}^{\mu}$. We therefore need to find the minimum value of $2 P_{C \mu} P_{D}^{\mu}$. Since it is a Lorentz scalar, this can be evaluated in any frame. Choose a frame in which C is at rest. In this frame $2 P_{C \mu} P_{D}^{\mu}=m_{C} E_{D}$ (rest frame of C). The minimum of energy of D is m_{D} and thus the minimum value is $m_{C} m_{D}$. In this configuration both C and D travel together. Thus

$$
m_{A}^{2}+m_{B}^{2}+2 m_{B} E_{A}(l)=m_{C}^{2}+m_{D}^{2}+m_{C} m_{D}=\left(m_{C}+m_{D}\right)^{2}
$$

or

$$
E_{A}(l)=\frac{\left(m_{C}+m_{D}\right)^{2}-m_{A}^{2}-m_{B}^{2}}{2 m_{B}}
$$

(b)In the centre of mass frame, $\vec{P}_{A}=-\vec{P}_{B} ; \vec{P}_{C}=-\vec{P}_{D}$ and the minimum energy configuration is when C and D are produced at rest. This is allowed as the initial total momentum is zero. We can write for this configuration
$\left(P_{C}^{\mu}+P_{D}^{\mu}\right)=\left(m_{C}+m_{D}, 0,0,0\right) ; P_{A}^{\mu}=\left(E_{A}(c . m), 0,0, P_{A}(c . m)\right) ; P_{B}^{\mu}=\left(E_{B}(c . m), 0,0,-P_{A}(c . m)\right)$
Also

$$
P_{B}^{\mu}=\left(P_{C}^{\mu}+P_{D}^{\mu}\right)-P_{A}^{\mu}
$$

Squaring we get

$$
m_{B}^{2}=\left(m_{C}+m_{D}\right)^{2}+m_{A}^{2}-2\left(m_{C}+m_{D}\right) E_{A}(c . m)
$$

or

$$
E_{A}(c . m)=\frac{\left(m_{C}+m_{D}\right)^{2}-m_{A}^{2}-m_{B}^{2}}{2\left(m_{C}+m_{D}\right)}
$$

4. Consider the decay $\pi^{0} \rightarrow \gamma+\gamma$ (mass of pion is M_{π}). Assume that the decay is isotropic in the rest frame of π^{0}. Now consider a frame π^{0} is moving with energy E. Show that the energy distribution of the photons in this frame is given by

$$
\frac{d N\left(E_{\gamma}\right)}{d E_{\gamma}}=\mathrm{constant}
$$

where $N\left(E_{\gamma}\right)$ is the number of photons emitted as a funcion of the energy of the photon E_{γ}. Further show that $E(1-\beta)<E_{\gamma}<E(1+\beta)$ where $\beta=\left(E^{2}-M_{\pi}^{2}\right)^{1 / 2} / E$

Solution:
Let the pion momentum be along the third direction. In the rest frame of pion let one of the photon have the four momenta $P_{\gamma 1}^{\mu}=P_{\gamma 1}^{\mu}=m_{\pi} / 2(1, \sin (\theta), 0, \cos (\theta))$. The other photon would have $P_{\gamma 2}=m_{\pi} / 2(1,-\sin (\theta), 0,-\cos (\theta))$. We can transform this four vector to the frame in which pion has energy E. Its three momentum vector is $\left(0,0, p=\left(E^{2}-m_{\pi}^{2}\right)^{1 / 2}\right)$ If E_{1}^{\prime} is the energy of the photon 1 in the frame in which pion is moving, we have

$$
E_{1}^{\prime}=\gamma\left(\frac{m_{\pi}}{2}+\beta \frac{m_{\pi}}{2} \cos (\theta)=\frac{E}{2}(1+\beta \cos (\theta)\right.
$$

as $\gamma=E / m_{\pi}$. thus

$$
\frac{E}{2}(1-\beta)<E_{1}^{\prime}<\frac{E}{2}(1+\beta)
$$

In the rest frame of the pion the distribution of the photon is isotropic.

$$
\frac{d N}{d \cos (\theta)}=K
$$

where K is a constant. we also have $\frac{d E_{1}^{\prime}}{d \cos (\theta)}=\frac{E \beta}{2}$ Thus we write

$$
\frac{d N\left(E_{1}^{\prime}\right)}{d E_{1}^{\prime}}=\frac{d N}{d \cos (\theta)} \frac{d \cos (\theta)}{d E_{1}^{\prime}}=\frac{2}{E \beta} \frac{d N}{d \cos (\theta)}
$$

$$
=K \frac{2}{E \beta}=\text { constant } .
$$

5.(a) The life time of a particle in natural units $(\hbar=c=1)$ is $1 M e v^{-1}$. Find the lifetime in seconds.
(b) the cross section of scattering in a process is $1 \mathrm{Mev}^{-2}$. Find the cross section in cm^{2}

Solution:

$$
\begin{aligned}
\tau=\frac{\hbar}{E}=\frac{\hbar}{M e V} & =\frac{1.055 \times 10^{-34}}{1.602 \times 10^{-13}}=6.58 \times 10^{-22} \\
\sigma=\frac{\hbar^{2} c^{2}}{M e V)^{2}} & =\left(\frac{1.05 \times 10^{-34} 3 \times 10^{8}}{1.602 \times 10^{-18}}\right) \mathrm{m}^{2} \\
& =3.9 \times 10^{-22} \mathrm{~cm}^{2}
\end{aligned}
$$

