Phy 523
PARTICLE PHYSICS
Midsemester -II
Attempt all questions; All questions carry equal marks.
March 28th 2009
Time allowed 90 minutes

1. Consider the decay of $\Lambda^{0}\left(P_{\Lambda}\right) \rightarrow p\left(P_{p}\right)+\pi^{-}\left(P_{\pi}\right)$ whose matrix element is given by

$$
<p P_{p} ; \pi P_{\pi}|M| \Lambda^{0} P_{\Lambda}>=N \bar{u}\left(P_{p}\right)\left(A+B \gamma_{5}\right) u\left(P_{\Lambda}\right)(2 \pi)^{4} \delta^{4}\left(P_{\Lambda}-P_{p}-P_{\pi}\right)
$$

where N is the normalisation constant.
Show that the terms $\bar{u}\left(P_{p}\right) \sigma_{\alpha \beta} P_{p}^{\alpha} P_{\pi}^{\beta} u\left(P_{\Lambda}\right)$ and $\bar{u}\left(P_{p}\right) \sigma_{\alpha \beta} P_{\pi}^{\alpha} P_{\Lambda}^{\beta} u\left(P_{\Lambda}\right)$ can be converted to the terms of the form A and $B .\left(\sigma_{\alpha \beta}=i\left(\gamma_{\alpha} \gamma_{\beta}-\gamma_{\beta} \gamma_{\alpha}\right) / 2\right)$.
2. Consider the interaction of a Dirac particle $\Psi(x)$ with a scalar field $\phi(x)$ obeying the equation

$$
(i \not \partial-m) \Psi(x)=-g \phi(x) \gamma_{5} \Psi(x)
$$

. Show that

$$
\Psi_{i}(x)=\psi_{i}(x)-g \int d^{4} y S_{F}(x-y) \phi(y) \gamma 5 \Psi_{i}(y)
$$

where $S_{F}(x-y)$ is the free particle Feynman propagator. Ψ
Show that S-matrix element is given by

$$
S_{f i}=(2 \pi)^{3} \delta_{i f}+i g \epsilon \int d^{4} y \bar{\psi}_{f}(y) \phi(y) \gamma_{5} \Psi_{i}(y)
$$

where $\psi_{i}(x), \psi_{f}(x)$ are the free particle initial and final wave functions. $\epsilon=$ $(-1)^{n}$ where n is the number of antiparticle at time $-\infty$.
(You can use the expression for the Feynman propagator
$S_{F}(x-y)=-i \theta\left(x^{0}-y^{0}\right) \int \frac{d^{3} p}{(2 \pi)^{3}} \sum_{r=1,2} \psi_{p}^{r}(x) \bar{\psi}_{p}^{r}(y)+i \theta\left(y^{0}-x^{0}\right) \int \frac{d^{3} p}{(2 \pi)^{3}} \sum_{r=3,4} \psi_{p}^{r}(x) \bar{\psi}_{p}^{r}(y)$ derived in the class. $\psi_{p}^{r}(x)$ are the plane wave solutions.)
3. Draw the Feynman diagram for the process $e^{-}+\mu^{-} \rightarrow e^{-}+\mu^{-}$, assuming only electromagnetic ineraction is present. Write down the matrix element including the normalisation and the phase.

