Phy 523
PARTICLE PHYSICS
Problem sheet VII
3rd March 2009
10th March 2009
31. Consider the spin zero particle under the action of a scalar current J obeying the equation

$$
\partial^{\mu} \partial_{\mu} \Phi(x)+m^{2} \Phi(x)=-J(x)
$$

Writing the Greens function as

$$
\left(\frac{\partial}{\partial x^{\mu}} \frac{\partial}{\partial x_{\mu}}+m^{2}\right) \Delta_{F}(x, y)=-\delta^{4}(x-y)
$$

show that the general solution of the spin one equation in the presence of J is

$$
\Phi_{i}(x)=\phi_{i}^{0}+\int d^{4} z \Delta_{F}(x-z) J(z)
$$

where ϕ^{0} is the solution of the free Klein Gordon equation.
32. Evaluate the propator $\Delta_{F}(x-y)$ using the Feynman boundary condition and show it can be written as

$$
\begin{gathered}
\Delta_{F}(x-y)=-i \theta\left(x_{0}-y_{0}\right) \int \frac{d^{3} p}{(2 \pi)^{3}} f_{p}^{+}(x) f_{p}^{(+) *}(y) \\
-i \theta\left(y_{0}-x_{0}\right) \int \frac{d^{3} p}{(2 \pi)^{3}} f_{p}^{-}(x) f_{p}^{(-) *}(y)
\end{gathered}
$$

. where

$$
f_{p}^{+}(x)=\frac{1}{\sqrt{2 p^{0}}} e^{-i p . x} ; \quad f_{p}^{-}(x)=\frac{1}{\sqrt{2 p^{0}}} e^{i p . x}
$$

33. Let $J(x)=g \bar{\psi}(x) \psi(x)$ where is a spin half field and g is the coupling constant. Ψ obeys the equation

$$
(i \not \partial-m) \Psi(x)=-g \phi(x) \Psi(x) \ldots \quad E q \cdot(1)
$$

. Obtain the expression for the S-matrix element

$$
S_{f i}=\delta_{f i}-i g \epsilon \int d^{4} y \bar{\psi}(y) \phi(y) \Psi(y)
$$

where $\Psi(x)$ is the solution of Eq.(1) and can be written as

$$
\Psi(x)=\psi(x)+g \int d^{4} y S_{F}(x-y) \phi(y) \Psi(y)
$$

where $\psi(x)$ is the solution of a free particle Dirac equation. $\epsilon=(-1)^{n}$, where $n=$ the number of antiparticles at time $t \rightarrow-\infty$.
34. Draw the Feynaman diagramms to order g^{2} for the scattering (we will call the particle represented by the field ϕ as b and by the field ψ as f)

$$
b\left(k_{i}\right)+f\left(p_{i}\right) \rightarrow b\left(k_{f}\right)+f\left(p_{f}\right)
$$

and write the matrix element for the process.
35. Let the scalar field $\phi(x)$ represent a π^{-}meson. Introduce the electromagnetic interaction using the gauge principle and write down the Klein Gordon eqaution in the presence of an electromagnetic vector potential A_{μ}. Use this to wrie an expression for J.

