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§1 Intoduction

Solving the eigenvalue problem for the Hamiltonian gives the allowed values of en-

ergies of a system. Working within the Schrödinger representation, the eigenvalues

and eigenfunctions for a particle in box, square well, delta function potential and

the harmonic oscillator will be obtained. In the Schrödinger representation the

Hamiltonian operator, for a particle in one dimension, is

H =
~
2

2m

d2

dx2
+ V (x), (1)

and the eigenfunctions are obtained by solving the Schrödinger equation

Hu(x) = Eu(x) (2)

~
2

2m

d2u(x)

dx2
+ V (x)u(x) = Eu(x). (3)

Let us talk about the requirements that must be imposed on u(x), so that the

solution may be acceptable. When the potential is a continuous function of x, the

differential equation Eq.(3) requires the second derivative must exist and hence that

u(x) and its first derivative u′(x) must be continuous. The same requirement holds

for the potentials, such as square well, which are piecewise continuous with a finite

jump at the discontinuity. For more singular potentials, the correct requirements on

the solution and the its derivative will be found either from the Schrödinger equation

directly, or by regarding the potential as a limiting case of suitable potential. I will

go through this exercise for infinite well and the Dirac delta function potential.

Additional physical requirements on acceptable wave functions follow from the

fact that the absolute square |u(x)|2 has the interpretation of being probability

density. For motion in one dimension, in order that the position probability for

every interval may be finite, the solution u(x) must be less singular than |x− a|−1/2

for all x. Moreover, for bound state solutions, the probability density, |u(x)|2 must

approach zero as x→ ∞. This means that the solution must go to zero faster than

x−1/2 for large distances. An exception will be made for continuous energy solutions

which describe scattering from a potential. For the scattering problems when the

potential is a finite range, I will follow a common, though not rigorous, practise to

accept solutions which behave like free particle (plane waves in one dimension) at

large distances. This is consistent with the physical picture for scattering that the

particles behave like free particle at large distances.

We summarise a few important rules about the nature of solutions of the Schrödinger

equation. Thought there are exceptions to these rules, they are valid for the cases

of interest in our lectures. Let Vm denote the absolute minimum of the potential

V (x), i.e. Vm ≤ V (x), ∀x. Denoting the asymptotic values of the potential V (x) as

x→ ±infty by V±, it should be noted that
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§1 Particle in a box 3

1. Energy must must be greater than the minimum value Vm.

2. If the bound states exist, their energies are quantized and must be less than

both V±, in addition to being greater than Vm.

3. For energies greater than V−, or greater than V+, bound state solutions can

not be found and there in no quantisation of energy.

A detailed discussion of nature and properties of solutions will be taken up in a later

lecture.

§2 Piecewise Continuous Potentials

§1 Particle in a box

The energy levels of a particle in one dimensional infinite well

V (x) =

{

0, 0 ≤ x ≤ L

∞ outside
(4)

can be found by solving the Schrödinger equation for 0 ≤ x ≤ L, where the

particle is like a free particle and the solution is given by

u(x) = A sin kx+B cos kx, k2 =
2mE

~2
. (5)

Out side the box, the potential is infinity and the solution vanishes:

u(x) = 0, if x < 0, or x > L. (6)

The boundary conditions to be imposed on the solution are

u(0) = u(L) = 0, (7)

and no restriction on the derivatives at the boundary points x = 0, x = L. This

gives

u(0) = 0 ⇒ B = 0, (8)

u(L) = 0 ⇒ sin kL = 0. (9)

The solutions of this equation are kn = nπ/L, n = 1, 2, . . .. The energy levels are

given by
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En =
~
2k2n
2m

,=
~
2n2π2

2mL2
(10)

and the corresponding wave functions are

un(x) =

{

√

2
L
sin

(

nπx
L

)

0 ≤ x ≤ L

0 x < 0 or x > L.
(11)

and n takes all positive integral values.It should be noted that for k = 0 the

solution vanishes identically and therefore n = 0 is unacceptable.

§2 Square well

We shall discuss the energy spectrum for a square well potential shown in figure

below. Within the range of the well, it is an attractive, and constant, potential.

With suitable reference for potential energy, the potential can be chosen to be 0

inside the well. It is again a constant outside the range of the potential well. We

have chosen V0 > 0 to denote the value of the potential outside the well. We shall

now obtain the solution for energy levels of a square well potential in one dimension.

The square well potential is given by

✲

✻

Fig. 1

III I II

V0

V (x)

x

V (x) =

{

0 0 ≤ x ≤ L

V0 outside

Since the potential has different expressions for different values of x, the Schrödinger

equation is solved in the three regions (i) x < 0 (ii) 0 ≤ x ≤ L and (iii) x > L

separately. Also the two ranges of energy 0 < E < V0 and E > V0 will be considered

separately.
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Bound states

The bound states correspond to 0 < E < V0. For the bound states one must

insist that ψ(x) → 0 at large distances, because |ψ|2dx represents probability of

particle being found between x and x + dx. Thus in the limit x → ±∞, we must

have limψ(x) → 0. The solutions will be obtained in the three regions I,II, and

III separately. Besides vanishing of the solution at infinity, we shall impose the

requiremnet of continuity on the solution for the eigenfunctions and their derivatives.

Region I: The Schrödinger equation is

− ~
2

2m

d2ψ

dx2
= Eψ

or
d2ψ

dx2
+ k2ψ = 0

where k2 = 2mE/~2 and most general solution is

ψI(x) = A sin kx+B cos kx

Region II: When x > L, V (x) = V0 and the Schrödinger equation takes the form

− ~
2

2m

d2ψ

dx2
+ (V0 − E)ψ = 0

or
d2ψ

dx2
+

2m

~2
(V0 − E)ψ = 0

Denoting 2m
~2
(V0 −E) = α2, where α is real the most general solution for x < 0 is

ψII = Ceαx +De−αx

Region III The solution for x < 0 , will have the same form as in the region II.

ψIII = Feαx +Ge−αx

Boundary conditions at infinity

For the bound states the wave function must vanish for large distances.

(i) We want that ψIII(x) should → 0 as x→ −∞.

∴ G = 0

(ii) Also ψII(x) should → 0 as x→ ∞

∴ C = 0



Continuity Conditions Next we require that the wave function and its derivative

be continuous at x = 0 and x = L.

(i) Continuity conditions for the solution and its derivative at x = 0 give

ψIII(x)|x=0 = ψI(x)|x=0 (12)

ψ′
III(x)|x=0 = ψ′

I(x)|x=0 (13)

writing out these and using G = 0 gives

F = B (14)

αF = kA (15)

which implies

B = kA/α (16)

(ii) Continuity conditions for the derivative at x = L give

ψI(x)|x=L = ψII(x)|x=L (17)

ψ′
I(x)|x=L = ψ′

II(x)|x=L (18)

These equations imply

A sin kL+B cos kL = De−αL (19)

kA cos kL− kB sin kL = −Dαe−αL (20)

We use Eq.(16) to eliminate B in favour of A, next using Eq.(19) and ( (20) )

we get two equations for A and D. These two equations can be written in form of

a matrix
[

sin kL+ k
α
cos kL −e−αL

k cos kL− k2

α
sin kL αe−αL

] [

A
D

]

= 0

These equations have a non trivial solution only when the determinant of the

matrix on left hand side is zero. This requirement gives a condition on the allowed

values of energy and can be cast in the forms

α(sin kL+
k

α
cos kL) + (k cos kL− k2

α
sin kL) = 0 (21)

(k2 − α2) sin kL− 2kα cos kL = 0. (22)

i.e.

tan kL =
2kα

k2 − α2
≡ tan 2θ, (23)
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where θ is defined by tan θ = α/k, it is now easy to see that bound state energy

eigenvalue must satisfy

k tan kL/2 = α, or k cot kL/2 = −α (24)

Energy E appears in the above quantization condition through k and α and can be

determined graphically.

§3 Delta function potential

We will use the following three methods for obtaining the solutions to the energy

eigenvalue problem for the Dirac δ function potential

V (x) = −gδ(x) (25)

where g > 0 is a constant. The three methods are

1. Dirac delta function potential as a limit of square well potential.

2. Solution of the eigenvalue problem by direct integration of the Schrödinger

equation.

3. Solution of the eigenvalue problem in momentum space.

For E > 0 the eigenvalues will be seen to be continuous and doubly degenerate. The

bound state exists only for E < 0. It will be shown that there is only one bound

state with energy level given by E = −|E|,

|E| = mg2

~2
. (26)

§1 δ function potential as limit of square well

To solve the δ function potential problem,

V (x) = −gδ(x), g > 0, (27)

we consider it to be a limiting case of a square well potential of the form

V (x) =

{

0, if |x| > a,

−V0 if |x| < a.

When the strength of the potential V0 → ∞ and the range a → 0 in such a way

that the area under the potential energy curve remains constant V0a ≡ g,
∫ a

0

V (x) dx = −2V0a. (28)
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we would get

limV (x) = −gδ(x). (29)

The solution of the square well is well known and we have the energy eigenfunction

given by

u(x) =











u1(x) = A sin kx+B cos kx if − a < x < a,

u2(x) = C exp(−αx), if x > a,

u3(x) = D exp(−αx), if x < −a.
(30)

where

k2 =
2m(V0 − |E|)

~2
, α2 =

2m|E|
~2

(31)

Since the bound state energy is expected to turn out to be negative, we have written

E = −|E|. The boundary conditions, that the wave function and its derivative must

be continuous at x = ±a, give the result that the energy eigenvalue must satisfy one

of the following two conditions.

k tan ka = α, or k cot ka = −α. (32)

In order to consider limit V0 → ∞, a → 0 with g = 2V0a held fixed, we substitute

V0 = g/2a and consider limit a→ 0. In this limit assuming |E| to remain finite, we

can substitute

k2 =
2m(V0 − |E|)

~2
∼ 2mV0

~2
∼ mg

~2a
. (33)

Therefore

ka ∼
√

mga

~2
, (34)

and the condition k tan ka = α becomes
√

mg

~2a
tan

(
√

mga

~2

)

=

√

2m|E|
~2

(35)

√

mg

~2

1√
a
tan

(
√

mga

~2

)

=

√

2m|E|
~2

. (36)

We use the value limx→0

(tanλx

x

)

= λ, with x ∼ √
a we get

lim
a→0

1√
a
tan

(
√

mg

~2

√
a

)

=

√

mg

~2
. (37)

Using this in the left hand side of (36) we get the bound state condition

mg

~2
=

√

2m|E|
~2

(38)
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Hence we have the bound state energy given by

E = −|E| = −mg
2

2~2
. (39)

It can be shown that there are no other solutions for the energy eigenvalues.

§2 Direct integration of the Schrödinger equation

We integrate the Schrödinger equation to derive boundary condition on the deriva-

tive of the eigenfunction at x = 0. We rewrite the Schrödinger equation for the delta

function potential

− ~
2

2m

d2u(x)

dx2
− gδ(x)u(x) = Eu(x) (40)

in the form
d2u(x)

dx2
+

2mg

~2
δ(x)u(x) =

2mE

~2
u(x). (41)

We want to solve for the bound state energy, hence E is negative and we set E =

−|E| and rewrite the Schrödinger equation as

d2u(x)

dx2
+

2mg

~2
u(x)− α2u(x) = 0, (42)

where α2 = 2m|E|
~2

.

Since δ(x) is zero for x 6= 0, the Schrödinger equation for x < 0 and x > 0, both,

takes the form
d2u(x)

dx2
− α2u(x) = 0 (43)

which has two independent solutions eαx and e−αx and we write the most general

solution as

u(x) =

{

u1(x) = A exp(αx) +B exp(−αx) x < 0

u2(x) = C exp(αx) +D exp(−αx) x > 0
(44)

Taking the boundary condition u(x) → 0 as x → ±∞ we get B = C = 0 and the

solution for the eigenfunction becomes

u(x) =

{

u1(x) = A exp(αx) x < 0

u2(x) = D exp(−αx) x > 0
(45)

Demanding that the wave function be continuous at x = 0 ( u1(0) = u2(0)) gives

D = A and we get

u(x) =

{

u1(x) = A exp(αx) x < 0

u2(x) = A exp(−αx) x > 0
(46)
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We integrate the Schrödinger equation, Eq.(42), from −ǫ to ǫ and take the limit

ǫ→ 0.
∫ ǫ

−ǫ

d2u

dx2
dx+

mg

~2

∫ ǫ

−ǫ

δ(x)u(x) dx− α2

∫ ǫ

−ǫ

u(x) dx = 0. (47)

or
du

dx

∣

∣

∣

ǫ

−ǫ
+

2mg

~2
u(0)− α2

∫ ǫ

−ǫ

u(x) dx = 0. (48)

The solution u(x) is continuous at x = 0, hence in the limit ǫ → 0 the region of

integration shrinks to zero and the last terms vanishes and we get the boundary

condition on the first derivative at x = 0 as

du2
dx

∣

∣

∣

x=ǫ
− du1

dx

∣

∣

∣

x=−ǫ
+

2mg

~2
u(0) = 0. (49)

Now using the explicit solution, Eq.(46), we get

u(0) = u1(0) = u2(0) = A (50)

and

du

dx

∣

∣

∣

x=ǫ
=

du2
dx

∣

∣

∣

x=ǫ
= −Aαe−αǫ, (51)

du

dx

∣

∣

∣

x=−ǫ
=

du1
dx

∣

∣

∣

x=−ǫ
= Aαe−αǫ. (52)

The boundary condition, Eq.(49), in the limit ǫ→ 0 becomes

−Aαe−αǫ − Aαeαǫ +
2mg

~2
A = 0 (53)

2mg

~2
= 2α⇒ m2g2

~4
= α2 =

2m|E|
~2

. (54)

Thus we get the bound state energy as

|E| = mg2

~2
=⇒ E = −|E| = −mg

2

~2
. (55)

The final form of the energy eigenfunction

u(x) = A exp(−α|x|), (56)

after normalization
∫ ∞

−∞

|u(x)|2 dx = 1 ⇒ 2

∫ ∞

0

|A|2 exp(−2αx) dx = 1, (57)

is given by

u(x) = α−1/2e−α|x|, α =
2mg

~2
. (58)

and the corresponding energy is given by Eq.(55).
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§3 Solution in Momentum Space

The Schrodinger equation for Dirac delta function potential is

− ~
2

2m

d2u(x)

dx2
− gδ(x)u(x) = Eu(x) (59)

Noting that δ(x)f(x) = δ(x)f(0), for a continuous function f(x) we rewrite the

Schrödinger equation as

− ~
2

2m

d2u(x)

dx2
− gδ(x)u(0) = Eu(x) (60)

Next the solution in coordinate space, u(x), is related to the momentum space

solution by

u(x) =
1

2π

∫ ∞

−∞

eikxũ(k) dk, (61)

also the Dirac delta function has the Fourier representation

δ(x) =
1

2π

∫ ∞

−∞

eikx dk. (62)

Substituting (61) , (62) in Eq.(60) we get

k2ũ(k)− 2mg

~2
u(0) =

2mE

~2
ũ(k). (63)

Solving for momentum space wave function ũ(k), ( with E = −|E|) we get

ũ(k) =
2mgu(0)

~2k2 + 2m|E| (64)

and the solution u(x) becomes

u(x) =
2mgu(0)

2π

∫

eikx

~2k2 + 2m|E| dk, (65)

=
mgu(0)

α~2
e−α|x|. (66)

where use has been made of
∫ ∞

−∞

eikx

k2 + a2
dk =

π

a
e−k|x|, (67)

a result which can be proved by the method of contour integration. Setting x = 0

Eq.(66), and remembering the u(0) 6= 0 we get

mg

α2
= 1 ⇒ |E| = mg2

~2
. (68)

11
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and

u(x) = u(0)e−α|x|. (69)

The unknown constant u(0) is to be fixed by normalization

∫ ∞

−∞

|u(x)|2 dx = 1 =⇒ α|u(0)|2 = 1. (70)

The final expressions for the bound state eigenfunction and energy are given by

E = −mg
2

~2
, u(x) = α−1/2e−α|x|. (71)

§4 Harmonic oscillator

We shall now outline the steps for deriving energy levels and wave functions for

harmonic oscillator in the coordinate representation. The eigenvalue equation

Hψ = Eψ

for the harmonic oscillator becomes the following differential equation in coordinate

representation
(−~

2

2m

d2

dx2
+

1

2
mω2q2

)

ψ(q) = Eψ(q) (72)

The main steps in solution of the eigenvalue problem in coordinate representation

are as follows.

1. In terms of dimensionless variables ξ = αq, λ = 2E/~ω, where α2 = mω/~,

the Schrödinger equation (1) becomes

d2ψ

dξ2
+ (λ− ξ2)ψ = 0 .

2. It can be seen that for large ξ solutions to the differential equation behave as

a polynomial times e±ξ2/2.

3. Define H(ξ) by means of the equation

ψ(ξ) = H(ξ)e−ξ2/2

then H(ξ) satisfies equation.

H ′′ − 2ξH ′ + (λ− 1)H = 0 . (73)
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4. The above equation is well known Hermite equation and can be solved by the

method of series solution. To solve the Hermite equation we write a series

expansion

H(ξ) = ξc(ao + a1ξ + a2ξ
2 + · · · ) (74)

The series (3) is substituted in (1), and coefficient of each power of ξ coming

from the L.H.S. of (2) must be set equal to zero. This gives value of c

c(c− 1) = 0 ⇒ c = 0, 1

and recurrence relations for the coefficients an

an+2 =
2n+ 2c+ 1− λ

(n+ c+ 1)(n+ c+ 2)
an . (75)

5. For c = 0 all the even coefficients are determined in terms of ao and all the

odd coefficients are proportional to a1, and ao and a1 are arbitrary. Thus one

gets

H(ξ) = a1y1(ξ) + a2y2(ξ) (76)

For c = 1 the solution for H(ξ) is proportional to y2(ξ) and is already con-

tained in (5). Hence this case, c = 1, need not be considered separately.

Note the eqn.(2) is a second order differential equation and the most general

solution is a linear combination of two independent solutions y1(ξ) and y2(ξ).

6. Next we must explore large ξ behaviour of (5). The relation (4) for large n

takes the form
an+2

an
∼ 2

n
.

which coincides with the ratio of the expansion coefficients, in the series for

exp(ξ2)

exp(ξ2) =
∑ ξ2n

n!

Thus the two solutions y1(ξ) and y2(ξ) behave like exp(ξ2) for large ξ and

ψ(ξ) = H(ξ)eξ
2/2 (77)

ξ→∞ ∼ eξ
2 × e−ξ2/2 = eξ

2/2 (78)

This behaviour of ψ(ξ) for large ξ makes the solution unacceptable because

ψ(ξ) would not be square integrable.
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7. The only way one can get a square integrable solution for ψ(q) is that the

solution H(ξ) must reduce to a polynomial. If H(ξ) is to contain a maximum

power n then we must demand the following conditions.

(i) an+2 = 0

⇒ 2n+ 2c+ 1− λ = 0

λ = 2n+ 1

and

(ii ) a1 = 0 if n = even

ao = 0 if n = odd.

8. The condition λ = (2n+ 1) is equivalent to the energy quantization

E = (n+
1

2
)~ω .

The wave functions are obtained by using conditions, as in (i) and (ii) above,

and the recurrence relations to solve for the coefficients an. The resulting

solutions for Hn are Hermite polynomials and the normalized eigenfunctions

are given by

ψn(q) =

(

α√
π 2nn!

)1/2

Hn(αq) exp(−α2q2/2)

These coincide with the wave functions obtained from operator methods 1
n!
(a†)nφ0(q).

§5 General Properties of Motion In One Dimen-

sion

§1 Bound state eigenvalues are non-degenerate :

Proof: We shall show that if for a given bound state energy eigenvalue E there

are two eigenfunctions ψ1 and ψ2, the two solutions must be proportional. Thus we

have (79) and (80)

− ~
2

2m

d2ψ1

dx2
+ V ψ1 = Eψ1 (79)

− ~
2

2m

d2ψ2

dx2
+ V ψ2 = Eψ2 (80)
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Multiply (79) by ψ2 and (80) by ψ1 and subtract to get

− ~
2

2m

(

ψ2
d2ψ1

dx2
− ψ1

d2ψ2

dx2

)

= 0 (81)

or
d

dx

(

ψ2
dψ1

dx
− ψ1

dψ2

dx

)

= 0 (82)

Integrating we get
(

ψ2
dψ1

dx
− ψ1

dψ2

dx

)

= const. , C

The constant C can be fixed by evaluating the left hand side at x = ∞. As x→ ±∞,

ψ1 → 0, ψ2 → 0 for bound states

∴ C = 0

Thus we get

ψ2
dψ1

dx
− ψ1

dψ2

dx
= 0 (83)

or
1

ψ1

dψ1

dx
− 1

ψ2

dψ2

dx
= 0 (84)

Integrating we get

lnψ1 − lnψ2 = const., K (85)

or ln(ψ2/ψ1) = lnK (86)

or ψ2 = Kψ1 (87)

∴ ψ1 and ψ2 are linearly dependent. Hence the bound state eigenvalues in one

dimension are non degenerate. An exception to this result is particle in twin, (or

more) boxes described by the potential

V (x) =











0 0 ≤ x ≤ L

0 2L ≤ x ≤ 3L

∞ otherwise

For this potential each energy eigenvalue has two linearly independent solutions.

§2 Behaviour of the energy eigenfunctions for large distances

Consider the motion of a particle in one dimension in a potential V (x) such that

a) V (x) has a minimum value Vmin

b) as x→ +∞ V (x) → V+
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c) as x→ −∞ V (x) → V−

Then the large distance behaviour of the corresponding energy eigenfunction is as

follows.

a) The energy eigenfunction for E < Vo is exponentially damped

ψE(x) −→ exp(−α1x) as x→ ∞ (88)

ψE(x) −→ exp(α2x) as x → −∞ (89)

where α1 =
√

2m(V
−
E)

~2
, α2 =

√

2m(V+−E)
~2

b) For E > Vo, the solution behaves like plane waves (i.e., it is oscillatory) at large

distances. As x → ∞

ψ(x) →











A cos k1x+B sin k1x

or

Aeik1x +Be−ik1x k1 =
√

2m(E − V+)~
2

(90)

and as x → −∞ we get

ψ(x) →















A cos k2x+B sin k2x

or

Aeik2x +Be−ik2x k2 =

√
2m(E−V

−
)

~2

§3 Nature and degeneracy of energy eigenvalues

The nature of energy eigenvalues, discrete or continuous, degenerate or non-degenerate,

is generally given by the following rules. It may be added that the rules give us an

idea what to expect for given potential and that exceptions to some of these rules

below are known to exist.

• It can be proved that the energy eigenvalues must be greater than or equal to

Vmin.

• Bound states exist for energy greater than Vmin and but below both V+ and

V−. The corresponding energy eigenvalues are discrete and nondegenerate.

• For E between V+, V−, the eigenvalues are continuous and non-degenerate.

• For E greater than both V+ and V−, the energies are continuous and doubly

degenerate.

You may check validity of these rules for the potential problems for which you

have seen exact solutions such as square well, harmonic oscillator and other poten-

tials .
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§4 Minimum bound state energy

If the potential function has a minimum at xo with a value Vmin. In classical

mechanics, a state with zero momentum, p = 0, and x = xo can exist and the

energy will be Vmin. In QM x and p cannot have sharp values simultaneously, and

for the lowest bound state the energy will, in general, be greater than Vmin. The

ground state energy can be estimated using the uncertainty principle. We shall

illustrate this by means of the harmonic oscillator.

V (x) =
1

2
mω2x2

Vmin = 0 classically x = 0, p = 0, E = 0 is a possible state. Quantum me-

chanically, the values of x and p will have some uncertainties ∆x and ∆p which are

subject to the uncertainty relation ∆p∆x ≃ ~. Taking the averages of x2 and p2

of the order of (∆x)2 and (∆p)2, respectively, and using ∆p ≈ ~

∆x
, we have

< KE > ≈ (∆p)2

2m
=

~
2

2m(∆x)2
(91)

< V (x) > ≈ 1

2
mω2(∆x)2 (92)

E ≈ ~
2

2m

(

1

∆x

)2

+
1

2
mω2(∆x)2 (93)

Minimizing E w.r.t. ∆x we get

~
2

2m

( −2

(∆x)3

)

+
1

2
mω22(∆x) = 0 (94)

(∆x)4 =
~
2

2m
× 2m

mω2
(95)

(∆x)2 =
~

mω
(96)

E ≈ ~
2

2m

mω

~
+

1

2
mω2 ~

2

mω
(97)

= ~ω (98)

If we had used ∆p∆x ≥ ~/2 we would have obtained

Emin =
~ω

2

which matches with the exact ground state energy of the harmonic oscillator. In

general this argent can be used to get a quick estimate of the ground state energy

for a given potential.
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§5 Parity

If the potential is an even function of x,i.e., V (−x) = V (x), the parity operator

commutes with the Hamiltonian.

P̂ Ĥ − ĤP̂ = 0 (99)

If uE(x) is an eigenfunction of energy with eigenvalue E, v(x) = Pu(x) = u(−x)
is also an eigenfunction of Hamiltonian with the same eigenvalue E. This is easily

seen by applying Ĥ on v(x).

Ĥv(x) = ĤP̂u(x) (100)

= P̂ Ĥu(x) (101)

= EP̂u(x) (102)

= Ev(x) (103)

Now there are two possibilities.

(a) When the eigenvalue is non-degenerate there is only one linearly independent

eigenfunction and u(x) and v(x) must be proportional. There must exist a

constant c such that

u(x) = cv(x) (104)

Noting the relation v(x) = u(−x), we have

u(x) = cu(−x) (105)

Making a replacement x→ −x in this equation implies

u(−x) = cu(x) (106)

Now Eq.(104) and Eq.(105) imply that c2 = 1 and hence c = ±1. This gives

u(x) = ±u(−x) and u(x) must be an eigenfunction of parity.

(b) In the first case when u(x) and v(x) are linearly independent, v(x) is a new

solution of the eigenvalue problem. This happens if and only if the energy

is degenerate. This is the case for example for a symmetric square well for

positive energies. If form the combinations w1(x), w2(x) defined by

w1(x) = u(x) + v(x) = u(x) + u(−x) (107)

w2(x) = u(x)− v(x) = u(x)− u(−x) (108)

and these will be eigenfunctions of parity.

Similar comments, though differing in details, will apply for any operator which

commutes with Hamiltonian of the system.
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§6 Tunnelling through a barrier

Consider an example of a particle is initially confined to a box whose walls can be

represented by a potential barrier of finite height V0. For example considering a

one dimensional box having walls represented by a potential of height V0. Let the

potential inside and outside box be zero.

If the energy of the particle is less than barrier height V0, classicallythe particle

will always remain confined to the box. Similarly for the two potentials shown in

Fig. 2 and Fig. 3 bounded motion is possible for a classical particle for energies

between V1 and V2 if the particle is on the left of the maximum at x = b, it cannot

cross the barrier at x=b when E < V2.

However, in quantum mechanics, the bound state energies for both the potentials

in Fig. 2 and in Fig. 3, do not correspond to this range V1 < E < V2 . For potential

of Fig. 2 there are no bound states at all. For all energies E > V0 the energies are

continuous and particle has a non zero wave function at ∞. For the potential of

Fig.3 bound states energy must lie betwee0 and V2. This happens because quantum

mechanically a particle can cross a barrier even if it has energy less than the barrier

height. Exactly in a similar fashion, a classical particle incident from the right

(x > b) withinE < V2 cannot reach the region x < b, whereas a quantum particle

can.

This phenomenon is known as barrier penetration or tunnelling. earliest know

example of tunnelling phenomenon is α decay.

V0

V1 V1

V2

V2

a b a b

Fig 2 Fig 3



§7 Periodic potentials, Energy bands

Let V (x) be a periodic potential with period L

V (x+ L) = V (x) .

The energy eigenvalues has bands of allowed energies and forbidden energies and

the energy level diagram is schematically shown in Fig. 4.

Allowed

Allowed

Allowed

Forbidden Band

Forbidden Band

values

values

values

E

Bands in Energy Level Diagram of a Periodic PotentialFig 4
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