SetTh-06 Lecture Notes Binary Operation

A. K. Kapoor

http://0space.org/users/kapoor; http://physics-lessons.globalcloudhost.com

kapoor.proofs@gmail.com; akkhcu@gmail.com

Definition 1 To every ordered pair $\langle a,b \rangle$ of elements of a set $\mathscr S$ a binary operation assigns an element, denoted by a*b, of the set $\mathscr S$. For a binary operation to be a valid one it must be defined for all pairs and the a*b must belong to the set and the result of binary operation must be unique.

How a Rule may fail to define a Binary Operation

A rule that associates a*b to an ordered pair of elements $a,b \in \mathcal{S}$ may fail to be a binary operation in following ways.

- 1. a * b may not be a unique element.
- 2. a * b may not be defined for all pairs of elements in the set.
- 3. The result may be unique and defined but may not belong the set.

Group as a an example of a set with a binary operation

A **group** is a pair $\langle \mathcal{G}, * \rangle$ with a binary operation * defined on a set \mathcal{G} such that the following axioms.

- (G-1) Associative property : $a*(b*c) = (a*b)*c \quad \forall a,b,c \in \mathcal{G}$
- (G-2) Existence of identity: \exists an element $e \in \mathcal{G}$ such that

$$e * a = a * e = a$$
 $\forall a \in \mathcal{G}.$

(G-3) Existence of inverse: $\forall a \in \mathcal{G}$ there exists an element a' such that

$$a * a' = a' * a = e$$

Remark Many books include an extra axiom called closure property. For us this property is included in the definition of binary operation.

FileName:KApoor:///Sets-Lec-01006.pdf

Created: Aug 2017

Location: http://0space.org/node/

License: Creative Commons

No Warranty, implied or otherwise

Click for More

Printed September 12,