SetTh-06 Lecture Notes Binary Operation

A. K. Kapoor
http://0space.org/users/kapoor
http://physics-lessons.globalcloudhost.com
kapoor.proofs@gmail.com; akkhcu@gmail.com

Definition 1 To every ordered pair $\langle a, b\rangle$ of elements of a set \mathscr{S} a binary operation assigns an element, denoted by $a * b$, of the set \mathscr{S}. For a binary operation to be a valid one it must be defined for all pairs and the $a * b$ must belong to the set and the result of binary operation must be unique.

How a Rule may fail to define a Binary Operation

A rule that associates $a * b$ to an ordered pair of elements $a, b \in \mathscr{S}$ may fail to be a binary operation in following ways.

1. $a * b$ may not be a unique element.
2. $a * b$ may not be defined for all pairs of elements in the set.
3. The result may be unique and defined but may not belong the set.

Group as a an example of a set with a binary operation

A group is a pair $\langle\mathcal{G}, *\rangle$ with a binary operation $*$ defined on a set \mathcal{G} such that the following axioms.
(G-1) Associative property : $a *(b * c)=(a * b) * c \quad \forall a, b, c \in \mathcal{G}$
(G-2) Existence of identity : \exists an element $e \in \mathcal{G}$ such that

$$
e * a=a * e=a \quad \forall a \in \mathcal{G}
$$

(G-3) Existence of inverse : $\forall a \in \mathcal{G}$ there exists an element a^{\prime} such that

$$
a * a^{\prime}=a^{\prime} * a=e
$$

Remark Many books include an extra axiom called closure property. For us this property is included in the definition of binary operation.

```
FileName:KApoor:///Sets-Lec-01006.pdf Created: Aug 2017

License: Creative Commons```

