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§1 Equations With Constant Coefficients

An nth order ordinary differential equation has the form

a0(x)
dny(x)

dxn
+a1(x)

dn−1y(x)

dxn−1
+a2(x)

dn−2y(x)

dxn−2
+. . .+an(x)y(x) = P (x)

(1)

where the coefficients a0(x), a1(x), a2(x), . . . , an(x) are in general func-

tions of x. There are two special cases of interest.

CASE I : a0, a1, a2, . . . , an are constants independent of x and a0 6=

0 In this case we say that the differential equation is the nth

order linear equation with constant coefficients.

CASE II : aj(x) are proportional to xn−j .In this case the equation

is known as the Euler equation.

In both these cases the complete solution of the differential equation

can be written down .

Case I: Equations with constant coefficients

Ordinary differential equation of nth order with constant coefficients

have the form [a0 = 1]

dny(x)

dxn
+ a1

dn−1y(x)

dxn−1
+ a2

dn−2y(x)

dxn−2
+ . . . + any(x) = 0, (2)
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where a1, a2, . . . , an are constants. Writing the differential equation

as Ly = 0 where L is the differential operator in the left hand side of

(2)

L =
dn

dxn
+ a1

dn−1

dxn−1
+ a2

dn−2

dxn−2
. . .+ an. (3)

This equation can be solved by taking a trial solution of the form

y(x, λ) = exp[λx] (4)

computing

Ly(x, λ) = [λn + a1λ
n−1 + a2λ

n−2 + . . .+ an ]y(x, λ) (5)

We see that Ly = 0 is satisfied by the trial solution if λ is a root of

the equation

λn + a1λ
n−1 + a2λ

n−2 + . . .+ an = 0. (6)

the r.h.s of Eq.(5) will become zero and corresponding y(x, λ) will

be a solution. Hence we know that if the Eq.(6) has n distinct roots

λ1, λ2, . . . , λn, then the ODE Eq.(2) has n solutions.

y1(x) = eλ1x; y2(x) = eλ2x; . . . yn(x) = eλnx. (7)

WHAT IF SOME ROOTS OF THE EQUATION Eq.(6)HAVE

MULTIPLICITIES GREATER THAN 1 ?

Let us consider a simple concrete example of a second order differen-

tial equation

Ly(x) ≡
d2y(x, λ)

dx2
− 2α

dy(x, λ)

dx
+ α2y(x) = 0. (8)

The trial function y(x, λ) = exp(λx) is a solution, if

λ2 − 2αλ+ α2 = 0.

This equation has a double root λ = α. This gives one solution

y(x) = eαx.

There is a second solution which can be found by several methods

discussed below.

Method 1:

Substituting y(x, λ) = eλx in Eq.(8)for y(x) in Eq.(8) and computing

Ly(x, λ) we get,[compare with Eq.(5)]

d2y(x, λ)

dx2
− 2α

dy(x, λ)

dx
+ α2y(x, λ) = (λ− α)2y(x, λ) (9)

Note that the right hand side of (9) vanishes for λ = α, giving the

first solution asy1(x) = y(x, α. Also note that the first derivative of

right hand side w.r.t. λ vanishes for λ = α. Thus differentiating

Eq.(9) w.r.t. λ and setting λ = α we get

d

dλ

[

d2

dx2
− 2α

d

dx
+ α2

]

y(x, λ)

∣

∣

∣

∣

λ=α

= 0. (10)
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Since the order of derivatives w.r.t λ and w.r.t x can be interchanged,

the Eq.(10) is equivalent to

[

d2

dx2
− 2α

d

dx
+ α2

]

d

dλ
y(x, λ)

∣

∣

∣

∣

λ=α

= 0 (11)

Thus d
dλ
y(x, λ) is a solution of the given differential equation for

λ = α.

This gives the second solution as y2(x) =
(

d
dλ
eλx

)
∣

∣

λ=α
= xeαx.

Method 2:

Suppose we start from a differential equation

d2y(x, λ)

dx2
− (α+ β)

dy(x, λ)

dx
+ αβy(x, λ) = 0 (12)

which has two distinct solutions

y1(x) = eαx; y2(x) = eβx. (13)

We then ask what happens when β tends to α? Obviously, the second

solution y2(x) tends to the first solution y1(x) and the two solutions

(13) are no longer independent. However, we can make use of the

fact that (12) is a linear differential equation and any superposition

of two solutions is also a solution. Thus we may write

y3(x) = Ay1(x) +By2(x) (14)

and select A and B in such a way that even in the limit β −→ α, y3(x)

remains independent of y1(x) and y2(x) . One possible choice of A

and B having this property is A = 1/(α − β) and B = −1/(α − β)

.With this choice Eq.(14) becomes

y3(x) =
y1(x)− y2(x)

α− β
=
eαx − eβx

α− β
(15)

and in the limit α→ β Eq.(15) tends to the desired solution:

lim
β→α

y3(x) = lim
β→α

eαx − eβx

α− β
=

d

dα
eαx = xeαx!

Method 3:

There is yet one more method, called the method of variation of

constants which gives a second solution directly in terms of the first

solution .We shall show how this method works for more general

ordinary differential equations. After obtaining the final result we

shall apply it to the case of the example Eq.(8) for which one solution

y1(x) = eαx is already known. In this method one writes the second

solution as

y(x) = u(x)y1(x) (16)

and demand that the differential equation satisfied by u(x) be of one

order lower. In this example equation for u will of order 1.
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Let y1(x) be a solution of the equation

[

d2

dx2
+ a(x)

d

dx
+ b(x)

]

y(x) = 0 (17)

substituting Eq.(16) in Eq.(17) we get

d2[u(x)y1(x)]

dx2
+ a(x)

d[u(x)y1(x)]

dx
+ b(x)u(x)y1(x) = 0 (18)

Using the fact that y1(x) satisfies the original equation Eq.(17) we

get an equation for u(x) as

y1(x)
d2u(x)

dx2
+ a(x)y1(x)

du(x)

dx
+ 2

dy1(x)

dx

du(x)

dx
= 0. (19)

Defining v(x) by

v(x) =
du(x)

dx
(20)

the Eq.(19) takes the form

y1(x)
dv(x)

dx
+ a(x)y1(x)v(x) + 2

dy1(x)

dx
v(x) = 0 (21)

This equation is of first order and can be solved for v(x), this solution

in turn gives u(x). To solve Eq.(21) we multiply it by y1(x) and

rearrange in the form

d

dx

[

y21(x)v(x)
]

= −a(x)y21(x)v(x) (22)

To solve the above equation, we introduce w(x) ≡ y21(x)v(x) and we

thus get
1

w(x)

dw(x)

dx
= −a(x). (23)

Hence we get

w(x) = c exp [−

∫ x

a(t)dt] (24)

where c is a constant of integration. Substituting w(x) = y21(x)v(x)

in (24), and defintion of v(x) from Eq.(20) gives the first order dif-

ferential equation

du(x)

dx
=

c

y(x)2
exp [−

∫ x

a(t)dt] (25)

which is integrated to give

u(x) = c

∫

1

y21(x)
e[−

∫
x

a(t)dt]dx (26)

y2(x) = y1(x)u(x) = cy1(x)

{
∫

1

y21(x)
e[−

∫
x

a(t)dt]dx+ d

}

(27)

where d is another constant of integration. Eq.(8)is a special case

of Eq.(17) with a(x) = −2α, b(x) = α2 and the one known solution

is y1(x) = e−αx. Making these substitutions in Eq.(27) the second

solution is easily computed to be

y(x) = cxy1(x) + d′e−αx, withd′ = cd. (28)
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This coincides with the a general linear combination of the two stan-

dard known solutions.

In general, y(x) so obtained will be a linear combination of so-

lutions obtained by other methods. All the three methods can be

generalized to include cases of higher multiplicities and higher order

differential equations.

§2 Frobenius Method of Series Solution

The Frobenius method of series solution is a useful method for a

large class of linear ordinary differential equations. However many of

the ordinary linear differential equations of mathematical physics are

of second order and we will limit our discussion to series solution of

second order, linear, ordinary differential equations only. The method

of course can be generalised to linear differential equations of higher

order. In this method of series solution, ordinary linear differential

equations, one starts with a trial solution of the form

y(x, c) =
∞
∑

n=0

anx
n+c (29)

The trial solution is substituted in the differential equation Ly = 0

where L is a linear differential operator of the form

L = a(x)
d2

dx2
+ b(x)

d

dx
+ c(x). (30)

Next we demand that the coefficient of each power of x be zero.

The resulting equations determine the index c and the coefficients

an. At first we shall discuss the method by means of examples. Later

we shall discuss a theorem which tell us the conditions under which

this method will give rise to n linearly independent solutions. The

relevant theorem, known as Fuch’s theorem also tell us the minimum

radius of convergence of the solution obtained in the series form.

The details of the method of series solution depend on the roots

of the indicial equation. We will illustrate the four cases that arise

by means of Bessel’s equation.

Bessel’s equation as an example: To introduce the method we

take up the Bessel’s equation as an example. The Bessel’s equation

is

x2
d2y

dx2
+ x

dy

dx
+ (x2 − ν2)y = 0. (31)

Substituting Eq.(29)in Eq.(31) we get

x2
∞
∑

n=0

an(n+c)(n+c−1)xn+c−2+x

∞
∑

n=0

an(n+c)x
n+c−1+(x2−ν2)

∞
∑

n=0

anx
n+c = 0.

(32)
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Rewriting Eq.(32) as

∞
∑

n=0

an(n+c)(n+c−1)xn+c+
∞
∑

n=0

an(n+c)x
n+c+

∞
∑

n=0

anx
n+c+2−ν2

∞
∑

n=0

anx
n+c = 0,

(33)

we see that the lowest power of x in the above equation is xc. Equat-

ing the coefficient of xc in Eq.(33)to zero we get

a0c(c− 1) + a0c− ν2a0 = 0, (34)

a0(c
2 − ν2) = 0. (35)

Assuming a0 6= 0 we get

c2 − ν2 = 0. (36)

This equation determine the index c and is called the indicial

equation. For the present case the two possible values of are c1 and

c2 where

c1 = ν, c2 = −ν. (37)

We continue and equate coefficient of the next power xc+1 to zero.

This gives

a1((c+ 1)2 − ν2) = 0 ⇒ a1 = 0 (∵ (c+ 1)2 − ν2 6= 0). (38)

Equating the coefficient of xc+m to zero gives recurrence relation

an = −
an−2

(n+ c)2 − ν2
. (39)

The recurrence relations show that higher coefficients are determined

in terms of a0 and a1, the even terms are proportional to a0 and the

odd ones being proportional to a1. .

For a second order linear differential equation the following four

cases arise. How different cases arise is illustrated below by means of

example of Bessel’s equation for different values of parameter ν.

CASE-I : The roots of indicial equation are distinct and the differ-

ence of the roots is not an integer.

For Bessel’s equation this is the case when 2ν 6= integer. This

case poses no problem and the solution for both values of c can

be written down using the recurrence relations and one gets

the two linearly independent solutions one for each value of the

index c.

CASE-II : The roots of indicial equation are equal. For Bessel’s

equation this is the case when ν = 0 and one seems to get only

one solution.

CASE-III : The difference of the roots of indicial equation is a non-

zero integer and some coefficient an becomes infinite.

The Bessel’s equation with 2ν = integer comes under this case.

Substituting c = −ν in the recurrence relation we get

an =
an−2

(n+ c− ν)(n+ c+ ν)
=

an−2

(n− 2ν)(n)
(40)
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and one notices that the n−2ν in the denominator becomes zero

when 2ν is an integer and the coefficient a6, becomes infinite.

Thus, for example for ν = 3, a6, a8, ... all become infinite due

to presence of (n− 2ν) factor in the denominator.

CASE-IV : The difference of the roots of indicial equation is a non-

zero integer and some coefficient an becomes indeterminate.

To understand how this case arises, consider the Bessel’s equa-

tion for 2ν = odd integer, say 5. In this case again, Eq.(40)

shows that, a5 has a zero in the denominator. However, it

should be noticed that the recurrence relations imply that a5

is proportional to a1 which itself is zero. Thus a5 becomes

“(zero/zero)” and is therefore indeterminate. This makes all

the subsequent coefficients a7, a9, ... indeterminate.

The above discussion illustrates the four cases that may arise

while applying the method of series solution to a differential equation.

Each of these cases can be handled and two linearly independent

solutions can be constructed when the method is applicable. Theorem

by Fuchs tells us when the method can be applied and convergence

properties of the series solution obtained,

§3 The Series About Point at Infinity

For a second order linear differential equation

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0 (41)

sometimes instead of a series solution in powers of x, it may be useful

to expand in negative powers of x:

y(x, c) = xc
∞
∑

n=0

anx
−n (42)

This results on convergence etc. of this type of solutions are con-

veniently obtained by changing the independent variable from x to

t = 1/x. The differential equation Eq.(41) written in terms of t be-

comes
d2y

dt2
+ p̃(t)

dy

dt
+ q̃(t)y = 0 (43)

where

p̃(t) =
2

t
−

1

t2
p(t); q̃(t) =

1

t4
q(1/t) (44)

The behaviour of the series solution at t = 0 gives the answer for the

behaviour of the solution in the inverse powers of x.
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§4 Series Solution Case-I

Case-I: Example

In this lecture we shall take up solution of an ordinary differential

equation by the method of series solution. The example to be dis-

cussed is such that the indicial equation has two distinct roots and

the difference of the roots is not an integer.

Consider the equation

4x
d2y

dx2
+ 2

dy

dx
+ y = 0 (45)

Let us assume a solution in the form

y(x, c) =

∞
∑

n=0

anx
n+c (46)

where c and an are to be fixed. Substituting Eq.(46) in the differential

Eq.(45) we get

4x

∞
∑

n=0

an(n+c)(n+c−1)xn+c−2+2

∞
∑

n=0

an(n+c)x
n+c−1+

∞
∑

n=0

anx
n+c = 0

(47)

or,
∞
∑

n=0

4an(n+c)(n+c−1)xn+c−1+
∞
∑

n=0

2an(n+c)x
n+c−1+

∞
∑

n=0

anx
n+c = 0

(48)

or,

∞
∑

n=0

2(n + c)(2n + 2c− 1)anx
n+c−1 +

∞
∑

n=0

anx
n+c = 0 (49)

We now equate coefficients of different powers of x to zero. The

minimum power of x in Eq.(49) is xc−1. So we get

Coeff of xc−1 : a02c(2c − 1) = 0 (50)

Coeff of xc : a12(c + 1)(2c + 1) + a0 = 0 (51)

or, a1 = −
a0

2(c+ 1)(2c + 1)
(52)

Coeff of xc+1 : a22(2 + c)(4 + 2c− 1) + a1 = 0 (53)

or, a2 = −
a1

(2c+ 3)(2c + 4)
(54)

Coeff of xc+m : am+12(m+ c+ 1)(2m + 2c+ 1) + am = 0 (55)

or am+1 = −am
1

2(m+ c+ 1)(2m + 2c+ 1)
(56)

The Eq.(50) gives the indicial equation

2c(2c + 1) = 0 (57)

or, c = 0,
1

2
(58)
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Solution for c = 0

The recurrence relation Eq.(56) becomes

am+1 = −
1

(2m+ 2)(2m+ 1)
am (59)

Therefore, a1 = −
1

2 · 1
a0 (60)

a2 = −
1

4 · 3
a1 =

1

4 · 3 · 2 · 1
a0 (61)

and

a3 = −
1

6 · 5
a2 =

1

6 · 5 · 4 · 3 · 2 · 1
a0 (62)

Thus am =
(−1)m

(2m)!
a0 (63)

and one solution for, c = 0, is

yI(x) = xc
∞
∑

n=0

anx
n = a0

{

1−
x

2!
+
x2

4!
−
x3

6!
+ . . .+

(−1)mxm

(2m)!
+ . . .

}

(64)

Solution for c = 1
2

In this case we have

am+1 = −
1

(2m+ 3)(2m+ 2)
am (65)

Therefore,

a1 = −
1

3 · 2
a0 (66)

a2 = −
1

5 · 4
a1 =

1

5 · 4 · 3 · 2
a0 (67)

a3 = −
1

7 · 6
a2 = −

1

7 · 6 · 5 · 4 · 3 · 2
a0 (68)

In general,

am =
(−1)m

(2m+ 1)!
a0 (69)

The second solution is, therefore, given by

yII = xc
∞
∑

n=0

anx
n = a0x

{

1−
x

3!
+
x2

5!
−
x3

7!
+ . . .+

(−1)mxm

(2m+ 1)!
+ . . .

}

(70)

The most general solution of the differential equation Eq.(45) is given

by

y(x) = αyI(x) + βyII(x) (71)

§5 Series Solution Case-II

In this method we shall take up solution of an ordinary differential

equation by the method of series solution. In this chapter we discuss

two examples for which the indicial equation has two equal roots.
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Case II : Example

The first example is the differential equation Ly = 0

x
d2y

dx2
+
dy

dx
+ y = 0 (72)

y(x, c) =

∞
∑

n=0

anx
n+c (73)

d

dx
y(x, c) =

∞
∑

n=0

an(n+ c)xn+c−1 (74)

d2

dx2
y(x, c) =

∞
∑

n=0

an(n+ c)(n + c− 1)xn+c−2 (75)

Substituting Eq.(73), Eq.(74) and Eq.(75) in the differential equation

Eq.(72) gives

x

∞
∑

n=0

an(n+c)(n+c−1)xn+c−2+

∞
∑

n=0

an(n+c)x
n+c−1+

∞
∑

n=0

anx
n+c = 0

(76)

or,

∞
∑

n=0

an(n+c)(n+c−1)xn+c−1+

∞
∑

n=0

an(n+c)x
n+c−1+

∞
∑

n=0

anx
n+c = 0

(77)

or,
∞
∑

n=0

an(n+ c)2xn+c−1 +

∞
∑

n=0

anx
n+c = 0 (78)

Before we start equating the coefficients of different powers of x

to zero, we derive a result for later use (see Eq.(81)below).

We split off the n = 0 term from the remaining series in the first term

in Eq.Eq.(78) and rewrite the l.h.s of Eq.(78) as

x
d2y

dx2
+
dy

dx
+y = a0c

2xc−1+

∞
∑

n=0

an(n+ c)
2xn+c−1+

∞
∑

n=0

anx
n+c (79)

In the first summation in the r.h.s. we replace n with m + 1 and

sum over m from 0 to ∞; while in the second summation we simply

replace nwithm. This gives

x
d2y

dx2
+
dy

dx
+y = a0c

2xc−1+

∞
∑

m=0

am+1(m+c+1)2xm+c+

∞
∑

m=0

amx
m+c

(80)

or

x
d2y

dx2
+
dy

dx
+y = a0c

2xc−1+

∞
∑

m=0

[

am+1(m+ c+ 1)2 + am
]

xm+c (81)

We now equate coefficients of different powers of x to zero. The

minimum power of x in Eq.(78) is xc−1. So we get

Coefficient of xc−1: a0c
2 = 0 (82)
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Assuming a0 6= 0 we get the indicial equation c2 = 0. Thus the roots

of the indicial equation are coincident and we have

c = 0. (83)

Coeff of xc in Eq.(81) : a1(c+ 1)2 + a0 = 0 (84)

a1 = −
a0

(c+ 1)2
(85)

Coeff of xc+1 in Eq.(81) : a2(2 + c)2 + a1 = 0 (86)

or, a2 = −
a0

(c+ 2)2(c+ 1)2
(87)

Coeff of xc+m in Eq.(81) : am+1 = −
am

(m+ c+ 1)2
(88)

This gives

am = (−1)m
a0

[(c +m)(c+m− 1) . . . (c+ 1)]2
(89)

and hence

y(x, c) =
∞
∑

n=0

anx
n+c = a0

∞
∑

n=0

(−1)n
xn+c

[(c+ n)(c+ n− 1) . . . (c+ 1)]2

(90)

Notice that, if we use Eq.(89) in Eq.(81), one gets that for c 6=

0 y(x, c) satisfies the relation

x
d2y(x, c)

dx2
+
dy(x, c)

dx
+ y(x, c) = a0c

2xc−1 (91)

The right hand side of the above equation vanishes if we set c = 0,

showing that y(x, c)|c=0 is a solution of the differential equation.

Also if we differentiate Eq.(91) w.r.t. c and set c = 0, the right

hand side again vanishes showing that dy(x,c)
dc

∣

∣

∣

c=0
is also a solution.

Thus two linearly independent solutions are given by

yI(x, c) = y(x, c)|c=0 and yII(x, c) =
dy(x, c)

dx

∣

∣

∣

∣

c=0

(92)

We shall now determine the series for the two solutions in Eq.(92).

The coefficients am can be expressed in terms of gamma functions

Γ(x) making use of the property

Γ(z + 1) = zΓ(z) (93)

Using Eq.(93) repeatedly, for r < n we get

Γ(z + n+ 1) = (z + n)Γ(z + n)

= (z + n)(z + n− 1)Γ(z + n− 1)

= . . . . . .

= (z + n)(z + n− 1)(z + n− 2) . . . (z + r)Γ(

Or, (z + n)(z + n− 1) . . . (z + r) =
Γ(z + n+ 1)

Γ(z + r)
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On using Eq.(96) with z = c, r = 1we get

(c+ n)(c+ n− 1) . . . . . . (c+ 1) =
Γ(c+ n+ 1)

Γ(c+ 1)
(97)

Use Eq.(97) to rewrite Eq.(90) to get

y(x, c) = a0[Γ(c+ 1)]2
∞
∑

n=0

(−1)n
xn+c

[Γ(c+ n+ 1)]2
(98)

Setting a0[Γ(c+ 1)]2 = 1, we get

y(x, c) = xc
∞
∑

n=0

(−1)n
xn

[Γ(c+ n+ 1)]2
(99)

The two solutions of the given differential equation are

y1(x) = y(x, c)|c=0 =

∞
∑

n=0

(−1)n
xn

[Γ(n+ 1)]2
=

∞
∑

n=0

(−1)n
xn

(n!)2
(100)

and

y2(x, c) =
dy(x, c)

dc

∣

∣

∣

∣

c+0

(101)

For the second solution the derivatives w.r.t. c, at c = 0, are needed

and can be conveniently expressed in terms of the Γ(x) and the func-

tion ψ(x), where

ψ(x) =
1

Γ(x)

dΓ(x)

dx
=

d

dx
log Γ(x) (102)

Therefore, computing the derivative of 1
[Γ(x)]2

d

dx

1

[Γ(x)]2
= −2

1

[Γ(x)]3
dΓ(x)

dx
= −2

ψ(x)

[Γ(x)]2
(103)

Differentiating y(x, c) given by Eq.(99) we get

dy(x, c)

dc
= xc log x

∞
∑

n=0

(−1)n
xn

[Γ(c+ n+ 1)]2
+ xc

∞
∑

n=0

(−1)n
d

dc

1

[Γ(c+ n+

(104)

Hence

y2(x) =
dy(x, c)

dc

∣

∣

∣

∣

c=0

= y1(x) log x− 2
∞
∑

n=0

(−1)n xn
ψ(n+ 1)

(n!)2

(105)

where in the last step in Eq.(105) we have used Eq.(103) to get

d

dc

1

[Γ(c+ n+ 1)]2

∣

∣

∣

∣

c=0

= −2
ψ(n + 1)

[Γ(n+ 1)]2
= −2

ψ(n + 1)

(n!)2

(106)

The most general solution is a linear combination of y1(x) and y2(x)

y(x) = α y1(x) + β y2(x) (107)

Question: In going from Eq.(98)to Eq.(99) we have made a choice

a0 =
1

[Γ(c+ 1)]2
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How will the solution y2 change if we had proceed without making

this choice ? It can be verified that the most general form Eq.(107)

of the solution is not affected by this choice

§6 Series Solution Case-III

We shall now take up the series solution for differential equations

when the roots of the indicial equation differ by an integer 6= 0. For

such equations two different possibilities arise.The first possibility,

discussed in this lecture is that roots of the indicial equation differ

by an integer and this results in some coefficient becoming infinite.

In the other possibility, to be taken up in the next lecture, is when

some coefficient becomes indeterminate.

Case-III : Example

An example of the case-III is the ordinary differential equation

x2
d2y

dx2
+ x

dy

dx
− (2x+ 1)y = 0 (108)

which we write as Ly = 0 where

Ly = x2
d2y

dx2
+ x

dy

dx
− (2x+ 1)y. (109)

Let

y(x, c) =
∞
∑

n=0

anx
n+c (110)

Then we have

d

dx
y(x, c) =

∞
∑

n=0

an(n+ c)xn+c−1 (111)

d2

dx2
y(x, c) =

∞
∑

n=0

an(n+ c)(n+ c− 1)xn+c−2 (112)

Substituting in the given differential equation Eq.(108), we get

x2
∞
∑

n=0

an(n+ c)(n+ c− 1)xn+c−2

+x

∞
∑

n=0

an(n+ c)xn+c−1 − (2x+ 1)

∞
∑

n=0

anx
n+c = 0(113)

Or we have,

∞
∑

n=0

an(n+ c)(n + c− 1)xn+c + x
∞
∑

n=0

an(n+ c)xn+c−1

− (2x+ 1)

∞
∑

n=0

anx
n+c = 0(114)

This can be rearranged as

∞
∑

n=0

an
{

(n+ c)2 − 1
}

xn+c − 2
∞
∑

n=0

anx
n+c+1 = 0 (115)
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Before we start equating the coefficients of different powers of x to

zero, we derive a result for later use (see Eq.(118) below ) for later

use. We split off the n = 0 term first sum and write it separately.

a0(c
2−1)xc+

∞
∑

n=0

an
{

(n+ c)2 − 1
}

xn+c−2

∞
∑

n=0

anx
n+c+1 = 0 (116)

The summation index in the second sum can be redefined from n to

r = n+ 1, so that sum over r runs from 0 to ∞. Thus we get

Ly(x, c) = a0(c
2−1)xc+

∞
∑

r=0

ar+1

{

(r + 1 + c)2 − 1
}

xr+1+c−2
∞
∑

r=0

arx
r+c+1 = 0

(117)

The left hand side of Eq.(115) is just Ly(x, c). Eq.(117) enables us

to rewrite Ly(x, c) as

Ly(x, c) = a0(c
2−1)xc+

∞
∑

r=0

ar+1

{

[(r + 1 + c)2 − 1]− 2ar
}

xr+1+c = 0

(118)

Eq.(118) will be needed below, for the moment we get back to Eq.(115).

The minimum power of x in Eq.(118) is xc to zero we get,

a0(c
2 − 1) = 0 (119)

The indicial equation is, therefore, given by c2−1 = 0 and the possible

values of c are ±1. Equating the coefficients of successive powers

xc+1, xc+2 etc. to zero gives

Coefficient of xc+1 : a1
[

(c+ 1)2 − 1
]

− 2a0 = 0 (120)

therefore a1 =
2a0

c(c + 2)
(121)

Coefficient of xc+2 :a2[(c+ 2)2 − 1]− 2a1 = 0 (122)

and hence

a2 =
2a1

(c+ 1)(c+ 3)
=

2.2a0
(c+ 1)(c + 3)(c+ 2)c

(123)

Note that the coefficient a2 becomes infinite when c = −1. Similarly,

the coefficient of xc+3 equated to zero implies

therefore a3 =
2a2

(c+ 4)(c+ 2)
(124)

The recurrence relation as obtained from Eq.(115) by demanding that

the coefficient of xm+c be zero.

(m+ c+ 1)(m+ c− 1)am − 2am−1 = 0 (125)

am =
2am−1

(m+ c+ 1)(m+ c− 1)
(126)

Thus a3, and all the subsequent coefficients, are proportional to a2

and hence becomes infinite for c = −1, due to presence of a factor

(c + 1) in the denominator of a2, see Eq.(123). Since the overall
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constant a0 arbitrary, we may select a0 = k(c+ 1) making a3 and all

the subsequent coefficients finite for both the values of c = ±1. With

the choice a0 = k(c + 1) and using the recurrence relation Eq.(126)

in Eq.(118) one gets

Ly(x, c) = a0(c
2 − 1)xc = k(c− 1)(c + 1)2xc (127)

It is apparent from the above equation that for c = 1 we have two

linearly independent solutions given by

y1(x) = y(x, c)|c=−1 and y2(x) =
dy(x, c)

dc

∣

∣

∣

∣

c=−1

(128)

It can be explicitly checked that yet another solution, obtained from

y(x, c) by setting c = −1, is proportional to the solution y1(x).

We shall now get explicit form of the two solutions Eq.(128), Eq.(121)Eq.(123),Eq.(124)

and Eq.(126) give

a1 =
2a0

(c)(c + 2)
, (129)

a2 =
2.2a0

(c+ 3)(c + 2)(c + 1)c
, (130)

a3 =
23a0

(c+ 4)(c + 3)(c + 2)(c+ 2)(c + 1)c
. (131)

In general

am =
2ma0

(m+ c+ 1)(m+ c) · · · (c+ 2)(̇m+ c− 1)(m+ c− 2) · · · c
(132)

Multiplying and dividing Eq.(132) by [Γ(c + 2)]2, the expression for

am can be easily cast in the form

am =
2ma0Γ(c+ 2)Γ(c + 2)

Γ(m+ c+ 2)Γ(m+ c)c(c + 1)
(133)

Writing the series for y(x, c), using Eq.(130),Eq.(131) and Eq.(133),

we obtain

y(x, c) = a0x
c

{

1 +
2x

(c)(c + 2)
+

22 x2

(c+ 1)c(c + 3)(c + 2)
+ · · ·

+
2mΓ(c+ 2)Γ(c + 2)

Γ(m+ c+ 2)Γ(m+ c)c(c+ 1)
xm + · · ·

}

(134)

Next we use a0 = k(c+ 1) and rewrite the above series as

y(x, c) = kxc
{

(c+ 1) + (c+ 1) +
2x

(c)(c + 2)
+

22 x2

c(c+ 3)(c + 2)
+ · · ·

+
2mΓ(c+ 2)Γ(c + 2)

Γ(m+ c+ 2)Γ(m+ c)c
xm + · · ·

}

(135)

One solution is obtained by setting c = −1 in Eq.(135). Apart from

an overall constant, the first solution can be written as

y1(x) =
∞
∑

m=2

2m

(m!)(m − 2)!
xm−1 = 2

∞
∑

m=0

2m+1

(m!)(m+ 2)!
xm+1 (136)
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To obtain the second solution we differentiate Eq.(135) w.r.t c and

set c = −1. This gives

dy(x, c)

dc
= k log xxc

{

(c+ 1) + (c+ 1)
2x

c(c + 2)
+

22 x2

c(c+ 3)(c + 2)
+ · · ·

· · ·+
2mΓ(c+ 2)Γ(c+ 2)

Γ(m+ c+ 2)Γ(m+ c)c)
xm + · · ·

}

+xc
{

1−
2x

c2
+

d

dc

22 x2

c(c+ 3)(c + 2)
+ · · · +

d

dc

2mΓ(c+ 2)Γ(c+ 2)

Γ(m+ c+ 2)Γ(m+ c)c)
xm + · · ·

}

(137)

Computing the derivative of log am, with am as in Eq.(133) we get

log am = log 2mk+2 log Γ(c+2)−log Γ(m+c+2)−log Γ(m+c)−log c

(138)

Thus we have and setting c = −1 one gets

1

am

dam
dc

∣

∣

∣

∣

c=−1

=

{

2ψ(c+ 2)− ψ(c +m+ 2)− ψ(m+ c)−
1

c

}
∣

∣

∣

∣

c=−1

= −2γ − ψ(m+ 1)− ψ(m− 1) + 1 (139)

Writing

φ(n) = 1 +
1

2
+

1

3
= · · ·+

1

n
(140)

and defining φ(0) = 0, and using

ψ(n) = −γ + φ(n − 1), for n ¿ 1 (141)

Eq.(139) can be simplified, for m > 2 to give

dam
dc

∣

∣

∣

∣

c=−1

= am [φ(m− 2) + φ(m)− 1] (142)

=
2m [φ(m− 2) + φ(m)− 1]

m! (m− 2)!
(143)

Substituting back in Eq.(137) gives the series for the second solution

as

y2(x) = −2y1(x) log x+ x−1∆(x) (144)

where ∆(x) is the series given by

∆(x) = 1− 2x+ x2 + · · ·+
2m [φ(m) + φ(m− 2)− 1]

m! (m− 2)!
xm + · · ·

=

{

1− 2x+ x2 + · · ·+

∞
∑

m=3

2m [φ(m) + φ(m− 2)− 1]

m! (m− 2)!
xm+1 + · · ·

}

The series solution obtained by setting c = 1 in y(x, c) of Eq.(135)is

proportional to y1(x).

§7 Series Solution Case-IV

In this lecture we shall take up solution of an ordinary differential

equation by the method of series solution. The example to be dis-

cussed is such that the difference of the roots of the indicial equation
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is an integer and some coefficient becomes indeterminate.

Consider the differential equation

d2y

dx2
+ x2y = 0 (145)

Substituting

y =

∞
∑

n=0

anx
n+c (146)

in Eq.(145) we get

∞
∑

n=0

an(n+ c)(n + c− 1)xn+c−2 + x2
∞
∑

n=0

anx
n+c = 0 (147)

or,

∞
∑

n=0

an(n+ c)(n + c− 1)xn+c−2 +

∞
∑

n=0

anx
n+c+2 = 0 (148)

The lowest power of x in the right hand side of Eq.(148) is xc−2. This

gives

a0c(c− 1) = 0 (149)

Therefore the two values of c are c = 0 and c = 1. Equating the

coefficients of xc−1, xc, xc+1, xc+2, . . . to zero successively gives

a1c(c+ 1) = 0, (150)

a2(c+ 1)(c + 2) = 0, (151)

a3(c+ 2)(c + 3) = 0, (152)

a4(c+ 4)(c + 3) + a0 = 0. (153)

The recurrence relation obtained by considering the coefficient of

xm+c+2 is

am+4(c+m+ 4)(c +m+ 3) + am = 0. (154)

The solution for c = 1 can be constructed easily using the recurrence

relations.

Let us now look at the case c = 0. In this case, fromEq.(150) we

get

a1.0 = 0. (155)

Thus a1 cannot be fixed and is indeterminate. In this case we proceed

as before except that we retain both a0 and a1 as unknown parame-

ters. We construct solution for this case, c = 0, first and then come

back and look at the solution for c = 1.

Case c = 0 :

Substituting c = 0 from Eq.(150) to Eq.(154) we get

a2 = a3 = 0; a4 = −
a0
4.3

(156)

am+4 = −
am

(m+ 4)(m+ 3)
(157)
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Combining Eq.(156) and Eq.(157) we see that

a2 = a6 = a10 · · · 0 (158)

and

a3 = a7 = a11 · · · 0 (159)

Also

a4 = −
1

4.3
a0; a8 = −

1

8.7
a4; a12 = −

1

12.11
a8 (160)

a5 = −
1

5.4
a1; a9 = −

1

9.8
a5; a13 = −

1

13.12
a9 (161)

Solving Eq.(160) and Eq.(161) we get

a4 = −
1

4.3
a0; a8 = −

1

8.7.4.3
a0; a12 = −

1

12.11.8.7.4.3
a0 (162)

a5 = −
1

5.4
a1; a9 = −

1

9.8.5.4
a1; a13 = −

1

13.12.9.8.5.4
a1 (163)

The series solution in this case contains two parameters, which are

not determined by the recurrence relations, and is given by

y(x) = a0y1(x) + a1y2(x) (164)

y1(x) = 1−
x4

3.4
+

x8

3.4.7.8
−

x12

3.4.7.8.11.12
+ · · · (165)

y2(x) = x

{

1−
x4

4.5
+

x8

4.5.8.9
−

x12

4.5.8.9.12.13
+ · · ·

}

(166)

These two functions y1(x) and y2(x) represent two linearly indepen-

dent solutions. What happens when one tries to construct the solu-

tion for the second value of c ? In this case we recover one of the

above two solutions already obtained. This will now be demonstrated

explicitly.

Case c = 1 :

In this case we get

a1 = a2 = a3 = 0 (167)

am+4 = −
am

(m+ 5)(m+ 4)
(168)

We therefore get

a4 = −
1

5.4
a0; a8 = −

1

9.8
a4; a12 = −

1

13.12
a8 (169)

Compare the equations Eq.(169) with Eq.(161). We now construct

the series

y = xc
∑

anx
n (170)

and get

y2(x) = a0x

{

1−
x4

4.5
+

x8

4.5.8.9
−

x12

4.5.8.9.12.13
+ · · ·

}

(171)

This solution coincides with y2(x) of Eq.(166) except for an overall

constant. Hence the most general solution of the differential equation

Eq.(145) is given by Eq.(164).
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§8 A Summary of Method of Series Solution

Summary of the method of series solution

The Frobenius method of series solution is a useful method for a large

class of linear ordinary differential equations of mathematical physics.

A general ordinary second order linear differential equation can be

put in the form

d2y(x)

dx2
+ p(x)

dy(x)

dx
+ q(x)y(x) = 0 (172)

In the Frobenius method of series solution, it is assumed that the

solution can be written in the form

y(x, c) =

∞
∑

n=0

anx
n+c = xc

[

a0 + a1x+ a2x
2 + · · ·+ anx

n + · · ·
]

(173)

The parameter c is called index. The expansion parameters an

and the index c are determined by substituting Eq.(173) in the ODE

Eq.(172), expanding p(x) and q(x) in powers of x, and comparing

the coefficients of different powers of x on both sides. The coefficient

of the general power n equated to zero gives recurrence relations for

the coefficients of expansion an. These recurrence relations are then

solved and the expansion coefficients are fixed.

When this method is applicable, one gets two linearly independent

solutions y1(x) and y2(x) for the second order differential equations.

The most general solution y(x) of the ODE Eq.(172) is then repre-

sented as a linearly combination of the solutions y1(x) and y2(x).

y1(x) = αy1(x) + βy2(x) (174)

where the constants α and β are to be fixed by initial conditions. It

must be remarked that the two linear independent solutions are not

always of the form Eq.(173) assumed in the beginning. In general

one may also get a series of type Eq.(173) multiplied by log x. The

expansion Eq.(173) is expansion about the point x = 0. In general,

one may attempt a series solution about any point x0. In such a case,

instead of Eq.(173), one assumes the solution to be of the form

y(x, c) =

∞
∑

n=0

an(x− x0)
c + n (175)
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We now summarize the method of obtaining two linearly inde-

pendent solutions in the four cases of series solution.

Case I: In this case the roots of the indicial equation are distinct

and the difference of the roots c1 and c2 is not an integer. The two

linearly independent solutions are given by

y1(x) = y(x, c)|c=c1
and y2(x) = y(x, c)|c=c2

Case II: In this case the roots of the indicial equation are equal to,

say, c0. The two linearly independent solutions are given by

y1(x) = y(x, c)|c=c0
and y2(x) =

d

dc
y(x, c)

∣

∣

∣

∣

c=c0

Case III: In this case the roots of the indicial equation, c1 and c2

is an integer.And one of the coefficients becomes infinite for one of

the values of c, which we assume to be c1. In this case we assume

a0 = k(c − c1), k 6= 0. The two linearly independent solutions are

then given by

y1(x) = y(x, c)|c=c1
and y2(x) =

d

dc
y(x, c)

∣

∣

∣

∣

c=c1

The solution obtained from y(x, c) by setting c = c2 is identical with

y1(x) apart from an over all constant.

Case IV: In this case the roots of the indicial equation, c1 and c2

are distinct and the difference of the roots c1 and c2 is an integer.

And one of the coefficients, say an, becomes indeterminate for one of

the values of c, which we assume to be c1. In this case we keep a0 and

an as unknown constants, and the most general solution containing

two unknown constants is obtained from y(x, c) setting c = c1.

y(x) = y(x, c)|c=c1

The solution obtained from y(x, c) by setting c = c2 coincides with

y(x) for particular values of the constants a0 and an.

Convergence of Series Solutions

We are now interested in knowing the properties of the solutions.

Having obtained the solutions in a series form one must ask what

are the values of x for which the series appearing in the solutions

converge? When do we have two linearly independent solutions ?

The answer to these and related questions is given by Fuch’s Theo-

rem.For this purpose it turns out to be useful to regard the indepen-

dent variable x as complex variable and to continue the two functions

p(x) and q(x) to the complex plane.

As a preparation to the statement of the Fuch’s Theorem we de-

fine an ordinary point, the regular singular and the irregular singular
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points of an ordinary differential equation. As already mentioned the

independent variable x will regarded as a complex variable.

A point x = x0 in the complex plane is called an ordinary point

of the second order linear differential equation if both the functions

p(x) and q(x) are analytic at x = x0.

A point x0 is called singular point of the second order ordinary

linear differential equation, if it is not an ordinary point.

A singular point x0 is called regular singular point of the

differential equation if the two functions P (x) and Q(x), where

P (x) = (x− x0)p(x), Q(x) = (x− x0)
2q(x) (176)

are analytic at x0.

A singular point x0 is called irregular singular point if it is a

singular point but not a regular singular point.

Point at Infinity: The above definitions are easily extended to the

point at infinity. We say that the point at infinity (x = ∞) is,

respectively, an ordinary point, a regular singular point of a differen-

tial equation Eq.(172) if for the corresponding equation Eq.(176),in

t = 1/x, the point t = 0 is an ordinary point or a regular singular

point. A similar statement holds for the irregular singular points.

Theorem 1 If x0 is an ordinary point of the differential equation

Eq.(172), there exist two linearly independent solutions which are an-

alytic at x0. These solutions are therefore expressible as power series

in (x − x0) in the form Eq.(175). The radius of convergence of the

power series is at least as large as the distance of x0 from the nearest

singular point of the functions p(x) and q(x) in the complex plane.

The Fuch’s theorem given below summarises the corresponding

results for the series solution about a regular singular point.

Theorem 2 (Fuch’s Theorem) If the differential equation Eq.(172)

has a regular singular singular point at x = x0 there exist two linearly

independent solutions which can be expressed in the form

y(x) = (x− x0)
c{log(x− x0)φ1(x) + φ2(x)} (177)

where φ1(x) and φ2(x) have power series expansions of the form

∞
∑

n=0

an(x− x0)
n (178)

The series expansions for φ1(x) and φ2(x) have radius of convergence

at least as large as the distance of x0 from the nearest point, in the

complex plane, of P (x) and Q(x) as defined in Eq.(176).
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