# Approximation Scheme for Time Dependent Problems 24.3 Resonance transitions* 

A.K. Kapoor<br>http://0space.org/users/kapoor<br>akkhcu@gmail.com; kapoor.proofs@gmail.com

## Contents

| $\S 1$ | Probability for Resonance Transitions |  |  |
| :--- | :--- | :--- | :--- | :--- |
| $\S 2$ | Details of solution | . . . . . . . . . . . . . . . . . . . . . . . . . | 1 |

## §1 Probability for Resonance Transitions

The case of periodic perturbation with a single frequency is an important one for many physical situations including the interaction of radiation with matter Assuming that $H^{\prime}$ varies periodically with time with a single frequency $\omega$ we write

$$
\begin{equation*}
H^{\prime}=F e^{i \omega t}+F^{*} e^{-i \omega t} \tag{1}
\end{equation*}
$$

where $F$ is an operator which does not depend on $t$ explicitly. Let us substitute Eq.(11) in Eq.(??) and integrate to get

$$
\begin{equation*}
C_{f}^{(1)}(t)=\langle f| F|i\rangle\left[\frac{e^{i\left(\omega_{f i}-\omega\right) t}-1}{-\hbar\left(\omega_{f i}-\omega\right)}\right]+\langle f| F^{\dagger}|i\rangle\left[\frac{e^{-i\left(\omega_{f i}+\omega\right) t}-1}{-\hbar\left(\omega_{f i}+\omega\right)}\right] \tag{2}
\end{equation*}
$$

Further analysis of the above relations depends on whether the final state $f$ corresponds to some discrete energy level or to a state in continuum.

In this section we consider the case of resonance transition from an initial discrete level $i$ to a final discrete level $f$ when the applied perturbation varies harmonically in time. Here the term level refers to an energy level of $H_{0}$. The first order perturbation result for a transitions between two discrete levels is

$$
\begin{equation*}
C_{f}^{(1)}(t)=\langle f| F|i\rangle\left[\frac{e^{i\left(\omega_{f i}-\omega\right) t}-1}{-\hbar\left(\omega_{f i}-\omega\right)}\right]+\langle f| F^{\dagger}|i\rangle\left[\frac{e^{-i\left(\omega_{f i}+\omega\right) t}-1}{-\hbar\left(\omega_{f i}+\omega\right)}\right] \tag{3}
\end{equation*}
$$

When the frequency $\hbar \omega$ is close to one of the two differences $E_{i}-E_{f}$, or $E_{f}-E_{i}$, the above result blows up and the perturbation theory breaks down. In this case we must get back to the exact equations and analyze them again making a different kind of approximation. We will do so and solve the resulting approximate equations exactly.

We start with Eq.(??) after substituting

$$
\begin{equation*}
H^{\prime}=F e^{i \omega t}+F_{1} e^{-i \omega t} \tag{4}
\end{equation*}
$$

we get

$$
\begin{align*}
i \hbar \frac{d C_{m}(t)}{d t}=\sum_{n} & \exp \left(i\left(\omega_{m n}+\omega\right) t\right)\langle m| F|n\rangle C_{n}(t) \\
& +\sum_{n} \exp \left(i\left(\omega_{m n}-\omega\right) t\right)\langle m| F^{\dagger}|n\rangle C_{n}(t) \tag{5}
\end{align*}
$$

In the perturbation approximation after integration, the large coefficients came from those terms which were multiplied with an exponential with a small argument. For a given $\omega$ when there are two energy levels $i$ and $f$ such that $\left|E_{f}-E_{i}\right|$ matches with $\omega$, we need to retain all the terms involving the two coefficients $C_{i}$ and $C_{f}$ in the summation in the right hand side of Eq. (55). Thus the resulting approximate equations to be solved assume the form

$$
\begin{equation*}
i \hbar \frac{d C_{f}(t)}{d t}=e^{i\left(\omega_{f i}+\omega\right) t}\langle f| F|i\rangle C_{i}(t) \quad+\quad e^{i\left(\omega_{f i}-\omega\right) t}\langle f| F^{\dagger}|i\rangle C_{i}(t) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
i \hbar \frac{d C_{i}(t)}{d t}=e^{i\left(\omega_{i f}+\omega\right) t}\langle i| F|f\rangle C_{f}(t) \quad+\quad e^{i\left(\omega_{i f}-\omega\right) t}\langle i| F^{\dagger}|f\rangle C_{f}(t) \tag{7}
\end{equation*}
$$

In these equations we retain only those exponentials which have small arguments. Taking $\hbar \omega \approx\left(E_{f}-E_{i}\right)$, using the notation $\nu \equiv \omega_{f i}-\omega$, and therefore writing $\omega_{i f}+\omega=-\nu$, we get

$$
\begin{align*}
i \hbar \frac{d C_{f}(t)}{d t} & =\langle f| F^{\dagger}|i\rangle e^{i \nu t} C_{i}(t)  \tag{8}\\
i \hbar \frac{d C_{i}(t)}{d t} & =\langle i| F|f\rangle e^{-i \nu t} C_{f}(t) \tag{9}
\end{align*}
$$

Next we solve these equations exactly with the initial conditions $C_{i}(0)=$ $1, C_{f}(0)=0$. The probability of transition from the initial level $E_{i}$ to the final level $E_{f}$ at time $t$ is then given by

$$
\begin{equation*}
\left.P_{i \rightarrow f}(t)=\frac{2|\langle f| F| i\rangle\left.\right|^{2}}{\hbar^{2} \Omega^{2}} \right\rvert\,\{1-\cos \Omega t\} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega^{2}=\frac{\left.\hbar^{2} \nu^{2}+|\langle f| F| i\right\rangle\left.\right|^{2}}{\hbar^{2}} \tag{11}
\end{equation*}
$$

It is to noted that the transition probability is periodic in time with the period $2 \pi / \Omega$ and its varies from 0 to a maximum value

$$
\begin{equation*}
\frac{2|\langle f| F| i\rangle\left.\right|^{2}}{\left.\hbar^{2} \nu^{2}+4|\langle f| F| i\right\rangle\left.\right|^{2}} \tag{12}
\end{equation*}
$$

For the exact resonance $\nu=\frac{E_{f}-E_{i}-\hbar \omega}{\hbar}=0$ and and we get the transition probability to be

$$
\begin{equation*}
\left.\left.P_{i \rightarrow f}(t)=\frac{1}{2}(1-\cos 2|\langle f| F| i\rangle \right\rvert\, t / \hbar\right) \tag{13}
\end{equation*}
$$

and the system makes periodic transitions between the levels $i$ and $f$ with the period $\pi \hbar /|\langle f| F| i\rangle \mid$

## §2 Details of solution

For the resonance transitions the equations satisfied by the coefficients $C_{i}$ and $C_{f}$, Eq.(8) and Eq.(9), are

$$
\begin{align*}
i \hbar \frac{d C_{f}(t)}{d t} & =\langle f| F^{\dagger}|i\rangle e^{i \nu t} C_{i}(t)  \tag{14}\\
i \hbar \frac{d C_{i}(t)}{d t} & =\langle i| F|f\rangle e^{-i \nu t} C_{f}(t) \tag{15}
\end{align*}
$$

In this section we solve these equations exactly and obtain expressions for $C_{i}(t)$ and $C_{f}(t)$. To solve we define

$$
\begin{equation*}
b_{f}=C_{f} \exp (-i \epsilon t) \tag{16}
\end{equation*}
$$

so that

$$
\begin{align*}
\frac{d}{d t} C_{f}(t) & =\frac{d}{d t}\left(b_{f} e^{i \epsilon t}\right)  \tag{17}\\
& =\left(\frac{d}{d t} b_{f}+i \epsilon b_{f}\right) e^{i \epsilon t} \tag{18}
\end{align*}
$$

Eliminating $C_{f}$ Eq.(14) and Eq.(15), using Eq.(16) and Eq.(17), we get

$$
\begin{equation*}
\dot{C}_{i}=\frac{1}{i \hbar}\langle i| F|f\rangle b_{f} \tag{19}
\end{equation*}
$$

and

$$
\begin{align*}
\dot{b}_{f}+i \epsilon b_{f} & =\frac{1}{i \hbar}\langle f| F^{\dagger}|i\rangle C_{i} \\
& =\frac{1}{i \hbar}\langle f| F|i\rangle^{*} C_{i} \tag{20}
\end{align*}
$$

Eliminating $C_{i}$ from Eq.(18) and Eq.(20) we get

$$
\begin{align*}
\ddot{b}_{f}+i \epsilon \dot{b}_{f} & =\frac{1}{i \hbar}\langle f| F^{\dagger}|i\rangle \dot{C}_{i} \\
& =-\frac{\left|F_{f i}\right|^{2}}{\hbar^{2}} b_{f} \tag{21}
\end{align*}
$$

Therefore, we have

$$
\begin{equation*}
\ddot{b}_{f}+i \epsilon \dot{b}_{f}+\frac{\left|F_{i f}\right|^{2}}{\hbar^{2}} \dot{b}_{f}=0 \tag{22}
\end{equation*}
$$

This is a linear differential equation with constant coefficient and can be solved exactly. The solutions of Eq.(22) have the form

$$
\begin{equation*}
b_{f}(t)=\exp (i \alpha t) \tag{23}
\end{equation*}
$$

where $\alpha$ satisfies the equation

$$
\begin{equation*}
\alpha^{2}+\epsilon \alpha-\frac{\left|F_{i f}\right|^{2}}{\hbar^{2}} \tag{24}
\end{equation*}
$$

The two roots of this equation are $\alpha_{ \pm}$where

$$
\begin{equation*}
\alpha_{ \pm}=-\frac{\epsilon}{2} \pm \Delta \tag{25}
\end{equation*}
$$

where $\Delta$ is given by

$$
\begin{equation*}
\Delta^{2}=\frac{\epsilon^{2}}{4}+\frac{\left|F_{i f}\right|^{2}}{\hbar^{2}} \tag{26}
\end{equation*}
$$

Substituting back in Eq.(23) the general solution for $b_{f}$ becomes

$$
\begin{equation*}
b_{f}(t)=A \exp \left(i \alpha_{+} t\right)+B \exp \left(i \alpha_{-} t\right) \tag{27}
\end{equation*}
$$

and hence

$$
\begin{equation*}
C_{f}(t)=\left[A \exp \left(i \alpha_{+} t\right)+B \exp \left(i \alpha_{-} t\right)\right] \exp (i \epsilon t) \tag{28}
\end{equation*}
$$

We then get, from Eq.(15),

$$
\begin{gather*}
C_{i}(t)=\left(\frac{i \hbar}{F_{i f}^{*}}\right)\left[i A \alpha_{+} \exp \left(i \alpha_{+} t\right)+i \alpha_{-} B \exp \left(i \alpha_{-} t\right)\right. \\
\left.+i \epsilon A \exp \left(i \alpha_{+} t\right)+i \epsilon B \exp \left(i \alpha_{-} t\right)\right] \tag{29}
\end{gather*}
$$

At time $t=0$, the initial conditions are $C_{i}(0)=1$ and $C_{f}(0)=0$ giving

$$
\begin{align*}
i A \alpha_{+}+i B \alpha_{-}+i \epsilon(A+B) & =F_{i f}^{*} / \hbar  \tag{30}\\
A+B & =0 \tag{31}
\end{align*}
$$

Using Eq.(29) and Eq.(30) we get

$$
\begin{equation*}
A(\epsilon / 2+\Delta)+B(\epsilon / 2-\Delta)=-\frac{F_{i f}^{*}}{\hbar} \tag{32}
\end{equation*}
$$

or

$$
\begin{align*}
2 A \Delta & =-\frac{F_{i f}}{\hbar}  \tag{33}\\
A & =-\frac{F_{i f}}{2 \Delta \hbar}  \tag{34}\\
B & =\frac{F_{i f}^{*}}{2 \hbar \Delta} \tag{35}
\end{align*}
$$

Rearranging Eq.(29) and using $B=-A$ we get

$$
\begin{aligned}
C_{i}(t) & \left.=\left(\frac{i \hbar}{F_{i f}^{*}}\right)\left[i A\left(\epsilon+\alpha_{+}\right) \exp \left(i \alpha_{+} t\right)+i B\left(\epsilon+\alpha_{-}\right) \exp \left(i \alpha_{-} t\right)\right] 36\right) \\
& =\left(\frac{i \hbar}{F_{i f}^{*}}\right)(i A)\left[\left(\epsilon+\alpha_{+}\right) \exp \left(i \alpha_{+} t\right)-\left(\epsilon+\alpha_{-}\right) \exp \left(i \alpha_{-} t\right)\right](37)
\end{aligned}
$$

Substituting for $\alpha_{ \pm}$from Eq.(25) we get

$$
\left.\begin{array}{rl}
C_{i}(t)= & \left(\frac{i \hbar}{F_{i f}^{*}}\right)\left(\frac{-i F_{i f}^{*}}{2 \Delta \hbar}\right) \times \exp (-i \epsilon t / 2) \\
& \times\left[(\epsilon / 2+\Delta) e^{i \alpha_{+} t}-(\epsilon / 2+\Delta) e^{i \alpha-t}\right] \\
= & \frac{1}{2 \Delta} \tag{39}
\end{array}\right) \exp (-i \epsilon t / 2)[2 \Delta \cos (\Delta t)+i \epsilon \sin (\Delta t)]
$$

and $C_{i}(t)$ is given by

$$
\begin{equation*}
C_{i}(t)=e^{-i \frac{\epsilon t}{2}}\left(\cos \Delta t+i \frac{\epsilon}{2 \Delta} \sin \Delta t\right) \tag{40}
\end{equation*}
$$

Also Eq.(28) with $B=-A$ gives

$$
\begin{align*}
C_{f}(t) & =A \exp (i \epsilon t)\left[\exp \left(i \alpha_{+} t\right)-\exp \left(i \alpha_{-} t\right)\right]  \tag{41}\\
& =2 i A \exp (i \epsilon t / 2) \sin \Delta t  \tag{42}\\
& =-\left(\frac{i F_{i f}^{*}}{\Delta \hbar}\right) \sin \Delta t \tag{43}
\end{align*}
$$

Hence the probability o finding the system in the state $f$ at time $t$ is

$$
\begin{align*}
\left|C_{f}(t)\right|^{2} & =\frac{\left|F_{i f}\right|^{2}}{\Delta^{2} \hbar^{2}} \sin ^{2} \Delta t  \tag{44}\\
& =\frac{\left|F_{i f}\right|^{2}}{\Delta^{2} \hbar^{2}} \sin ^{2}\left(\frac{\epsilon^{2}}{4}+\frac{\left|F_{i f}\right|^{2}}{\hbar^{2}}\right)^{1 / 2} t \tag{45}
\end{align*}
$$

