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§1 Fermi Golden Rule

In this section we assume that the perturbation is either independent of

time, or varies periodically with a single frequency and that the energy

of the final states lies in continuum. As mentioned in §??, we will derive

the Fermi Golden rule for the transition probability per unit time.

We shall start from Eq.(??) with ω = 0 and a similar treatment can

be for the case ω 6= 0.

When the perturbation term is independent of time the probability

amplitude, upto first order,(setting t0 = 0) is given by

C
(1)
f (t) = 〈f |H ′|i〉

(

exp(iωfit)− 1

−~ωfi

)

(1)

∗
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and the hence one has

|C
(1)
f (t)|2 =

4 sin2(ωfit/2)

~2ω2
fi

|〈f |H ′|i〉|2. (2)

We plot |C
(1)
f (t)|2 in the figure below. Note that |C

(1)
f (t)|2 is large for

ωfi ≈ 0 ,i.e. for Ei ≈ Ef . Only a small range of energy ∆E values

∆E ≈ 2π(~/t) (3)

have an appreciable transition probability. As t → ∞,∆E → 0 and

one recovers conservation of energy. The Eq.(3) suggests that if a mea-

surement is made after time ∆t, the accuracy in E will be of the order

of ∆E ≈ h/∆t which a form of statement of time energy uncertainty

relation.
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Fig. 1 Golden-Rule

Note that the area under the peak increases as t. Thus if we compute

the transition probability at time t, given by
∫ E+∆E

E−∆E
|C

(1)
f (t)|2|dE, (4)

to a set of states in the energy range E and E±∆E, the answer will be

proportional to time. In the case of transitions to a state in continuum,

the quantity of interest is the rate of transitions to a group of final states

having the energy in the range E±∆E, and hence one needs to compute

the transition probability per unit time. So we compute

d

dt
|C

(1)
f (t)|2 =

2

~
|〈f |H ′|i〉|2

(sinωfit

ωfi

)

(5)

and for large t this expression tend to

2π

~2
|〈f |H ′|i〉|2δ(ωfi) =

2π

~
|〈f |H ′|i〉|2δ(Ef − Ei) (6)

where use has been made of the standard results

lim
x→∞

sin kx

x
= πδ(x) (7)

δ(ax) =
1

|a|
δ(x) (8)

for the Dirac δ function. Hence the required transition probability per

unit time to the group of final states, obtained by differentiating Eq.(4)

w.r.t. t and denoted by wfi, is given by

wfi =
2π

~

∑

final states

|〈f |H ′|i〉|2 δ(Ef − Ei) (9)

Writing
∑

final states

(·) =

∫

dEfρ(Ef )(·) (10)

where ρ(Ef ) is the density of final states. Using Eq.(10) in Eq.(9) give

wfi =
2π

~
|〈f |H ′|i〉|2 ρ(E) (11)

where we have set Ef = Ei = E. This result is known as given by Dirac

and called Golden Rule by Fermi.

When the perturbation varies harmonically with time, we must anal-

yse Eq.(??) and the result is

wfi =
2π

~
|〈f |H ′|i〉|2 ρ(Ef ) (12)

The analysis proceeds by keeping only one of the two terms in Eq.(??)

and showing that the other term is not important. The final energy Ef

can have only one of the two values Ei + ~ω or Ei − ~ω only.

§2 Application to Scattering

Use of Fermi golden rule along with the first order first order perturba-

tion theory result leads to the first Born approximation result for the

differential cross section.
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Let us consider scattering of a beam of particles incident on a target

represented by a spherically symmetric potential V (r). The incident

beam of particles with momentum ~~ki, and an incident particle will be

represented by a plane wave N exp(i~ki · ~r). Let ~~kf be the momentum

of particles in the outgoing beam. A particle in the outgoing beam be

represented by the plane wave exp(i~kf · ~r).

We seek rate of transition into a solid angle dΩ, corresponding to mo-

mentum range ~kf and ~kf +d~kf.The Fermi golden rule gives the transition

probability per unit time w to be

dwi→f =
2π

~
ρ(E)|〈~kf|H

′|~ki〉|
2 (13)

and where the potential energy V (r) is taken to be the perturbation

Hamiltonian H ′. As it will be seen this rate of transition to group of

final states, i.e. those corresponding to the momentum in the range ~kf

and ~kf + d~kf, will be related the differential cross section.

We will work with plane waves with periodic boundary conditions

and normalized in a box of size L. The wave functions are

ui(~r) =
1

L3/2
exp(i~ki · ~r), ui(~r) =

1

L3/2
exp(i~ki · ~r). (14)

We only need to compute the density of states ρ( ~E) for momen-

tum range ~k and ~k + d~k. The allowed values of ~k in a box are kx =

2πnx/L, ky = 2|piny/L, kz = 2πnz/L, where nx, ny, nz are positive inte-

gers. There will be (L/2π)3dkxdkydkz for the propagation vector range

d~k around value ~k. The number of states in the small range of momenta

around ~k is then given by

L3

(2π)3
dkxdkydkz =

L3

(2π)3
k2 dk dΩ, . (15)

Since E = ~
2k2/(2m), the range dE of energy corresponding to a range

dk of wave vector is given by

E =
~
2k2

2µ
=⇒ dE =

~
2k

(2m)
dk =⇒

dE

dk
=

~
2k

µ
, . (16)

Therefore the number of states, ( (15) ) in the small range of momenta

around ~k becomes

L3

(2π)3
k2 dk dΩ =

L3

(2π)3
k2

( µ

~2k

)

dE dΩ (17)

=
L3

(2π)3

(µk

~2

)

dE dΩ (18)

Comparing this number of states with the expression ρ(E)dE we get

ρ(E) =
L3

(2π)3

(µk

~2

)

dΩ (19)

Using the expressions for the density of states, wave functions for the

initial and final states, the golden rule gives the transition rate to be

w =
2π

~
ρ(E)|〈i|H ′|f〉|2 dΩ (20)

=
µL3k

(4π2~3)
|〈i|H ′|f〉|2 dΩ. (21)

Let us now recall the definition of differential cross section. Let a scat-

tering experiment be performed with a total of N particles. The total

number of particles scattered into a solid angle dΩ per unit time is pro-

portional to the solid angle and to the incident flux.

Nw = Number of particles scattered per unit time

= σ(θ)× dΩ ×N × Flux. (22)
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The incident flux is just the probability current for the initial state and

equals

incident flux =
L3

(2π~)3
~k

µ
(23)

’constant of proportionality’ is just the differential cross section. And

also this number of particles scattered per unit time into solid angle dΩ

is just the total number of incident particles multiplied by the transition

probability per unit time, i.e. Nw. Therefore substituting Eq.(21) for

w, (22) becomes

N ×
µL3k

(4π2~3)
|〈i|H ′|f〉|2 dΩ = σ(θ)× dΩ×

(

N
~k

µ

)

(24)

Using the expressions for the initial and final state wave functions the

differential cross section becomes

σ(θ) =
( µ

2π~2

)2
∣

∣

∣

∣

∫

ei~q·~rV (r)d3r

∣

∣

∣

∣

2

(25)

where ~q = (~ki − ~kf ) is the momentum transferred. The above result

coincides with the result for the differential cross section in the first

Born approximation.
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