QM-Lecture Notes 6.4 General Principles of Quantum Mechanics* Simultaneous measurement

A.K. Kapoor http://0space.org/users/kapoor akkhcu@gmail.com; kapoor.proofs@gmail.com

§1 Compatible Observables

Let A and B be two dynamical variables, \hat{A}, \hat{B} be the corresponding operators, $\alpha_i, j = 1, 2, ...$ and $\beta_k, k = 1, 2, ...$ be their eigenvalues.

Let us assume that A and B can be measured simultaneously. This means there are states in which these variables have definite values $\alpha_j, \beta_k, j, k = 1, 2, \ldots$ The corresponding vectors $|\alpha_j, \beta_k\rangle$ must then be simultaneous eigenvectors of the the two operators.

$$\hat{A}|\alpha_j,\beta_k\rangle = \alpha_j|\alpha_j,\beta_k\rangle, \qquad \hat{B}|\alpha_j,\beta_k\rangle = \beta_k|\alpha_j,\beta_k\rangle \tag{1}$$

In order that the probability of getting pair of values α_j, β_k for all pairs j, k be given by the postulate III, it should be possible to write an arbitrary vector $|\psi\rangle$ as linear combination of these vectors $\mathscr{B} = \{|\alpha_j, \beta_k\rangle| j = 1, 2, ..., k = 1, 2, ...\}$ and these states must form a basis.

Now it is easy to show that the action of $\hat{A}\hat{B} - \hat{B}\hat{A}$ on each of these

KAPOOR //qm-lnu-06004.tex; Ver 16.x

November 13, 2016

vectors in the set ${\mathcal B}$ is zero. In fact

$$\left(\hat{A}\hat{B} - \hat{B}\hat{A}\right)|\alpha_j, \beta_k\rangle = \hat{A}\hat{B}|\alpha_j, \beta_k\rangle - \hat{B}\hat{A}|\alpha_j, \beta_k\rangle$$
(2)

$$= \hat{A}\beta_k |\alpha_j, \beta_k\rangle - \hat{B}\alpha_j |\alpha_j, \beta_k\rangle \tag{3}$$

$$= \alpha_j \beta_k |\alpha_j, \beta_k\rangle - \beta_k \alpha_j |\alpha_j, \beta_k\rangle \tag{4}$$

$$= 0.$$
 (5)

Thus we have proved that the action of commutator $[\hat{A}, \hat{B}]$ on every element of basis \mathscr{B} results in zero. This implies that $[\hat{A}, \hat{B}] = 0$ and the two operators \hat{A}, \hat{B} must commute.

Conversely, if two hermitian operators commute, one can select a basis of orthonormal vectors which are simultaneous eigenvectors of the two operators.

The above considerations generalize to several dynamical variables.

A set of operators $\{\hat{A}_k, k = 1, 2, ...\}$ is called *commuting set* if every pair of operators $\hat{A}_{\ell}, \hat{A}_m$ commute, *i.e.*

$$[\hat{A}_{\ell}, \hat{A}_m] = 0 \quad \text{for all pairs}\ell, m.$$
(6)

A set of dynamical variables $\{A_k, k = 1, 2, ...\}$ is called a compatible set if the corresponding set of operators $\{\hat{A}_k, k = 1, 2, ...\}$ is a commuting set of operators. It then follows that

Remember

"A set of dynamical variables an be can be measured simultaneously if and only if they commute pairwise. In other words they should form a compatible set."

§2 Functions of Operators

Let \widehat{X} be an operator which has eigenvalues and eigenvectors $\{\lambda_k, |u_k\rangle| k = 1, 2, ...\}$. Let us further assume that the span of eigenvectors of \widehat{X} is entire vector space. Then a function $\widehat{F}(X)$ of the operator \widehat{X} is defined by specifying its action on the basis formed by the eigenvectors $\mathscr{B} = \{|u_k\rangle| k = 1, 2, ...\}$

$$\widehat{F}(X)|u_k\rangle \equiv F(\lambda_k)|u_k\rangle, \quad k = 1, 2, \dots$$
 (7)

The action of the function $\widehat{F}(X)$ on an arbitrary vector $|\psi\rangle$ is obtained, as usual, by expanding the vector $|\psi\rangle$ in the basis \mathscr{B} :

$$|\psi\rangle = \sum_{k} c_k |u_k\rangle \tag{8}$$

$$\widehat{F}(X)|\psi\rangle = \sum c_k F(\lambda_k)|u_k\rangle.$$
(9)

As the hermitian operators and unitary operators have a complete set of orthonormal eigenvectors, their functions are defined by the method outlined above.

It is a simple exercise to show that if an operator \widehat{Y} commutes with \widehat{X} , it commutes with every function of \widehat{X} .

Complete commuting set: A set \mathscr{S} of operators is called *complete commuting set* if it is a commuting set and if any operator which commutes with every member of the set \mathscr{S} can be written as function of the operators in the set \mathscr{S} .

The concept of complete commuting set is important in choosing a basis and working with representations as against with abstract vector space.

For more details, we refer the reader to

T. F. Jordan, *Linear Operators for Quantum Mechanics*, John Wiley and Sons, New York (1969)

KAPOOR File:qm-Inu-06004.pdf	No Warranty, implied or otherwise
Created:Jul 2016	PROOFS
Printed November 13, 2016	License: Creative Commons