Problems on Matrix Diagonalization

Kapoor School of Physics University of Hyderabad Hyderabad-500046

November 21, 2011

Abstract

This document contains 150 different sets of matrices. Each set has five 3×3 matrices, with one matrix each of the following type:

1. All three eigenvalues are different;

2. Two eigenvalues are same and there are two linearly independent eigenvectors for this eigenvalue;

3. Two eigenvalues are equal and there is only one linearly independent eigenvector for this eigenvalue;

4. All the three eigenvalues are equal, and the matrix has in all two linearly independent eigenvectors;

5. All the three eigenvalues are equal, but the matrix has only one linearly independent eigenvector;

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - I

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -7 & -7 & 1 \\ 5 & 5 & -1 \\ -3 & -3 & 1 \end{pmatrix} \qquad (b) \begin{pmatrix} -3 & 4 & 4 \\ 0 & -3 & 0 \\ 0 & 2 & -1 \end{pmatrix} \qquad (c) \begin{pmatrix} -2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1 \end{pmatrix}$$
$$(d) \begin{pmatrix} -1 & 2 & 2 \\ -1 & -4 & -1 \\ -1 & -1 & -4 \end{pmatrix} \qquad (e) \begin{pmatrix} -1 & 1 & 2 \\ 2 & -2 & 5 \\ -2 & -1 & -6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -7 & -7 & 6\\ 8 & 8 & -6\\ -5 & -5 & 6 \end{pmatrix} \qquad (b) \begin{pmatrix} 0 & 0 & 3\\ -2 & -2 & -3\\ -2 & 0 & -5 \end{pmatrix} \qquad (c) \begin{pmatrix} -4 & -8 & -7\\ 1 & -3 & 1\\ 3 & 7 & 6 \end{pmatrix}$$
$$(d) \begin{pmatrix} 1 & -3 & 6\\ -1 & -1 & -2\\ -2 & 2 & -6 \end{pmatrix} \qquad (e) \begin{pmatrix} 0 & 2 & 4\\ -1 & 0 & 1\\ -2 & -2 & -6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - III

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -7 & -6 & -9\\ 4 & 5 & 4\\ 6 & 4 & 8 \end{pmatrix}$$

$$(b) \begin{pmatrix} -7 & 5 & -5\\ -5 & 3 & -5\\ 5 & -5 & 3 \end{pmatrix}$$

$$(c) \begin{pmatrix} -3 & -2 & 3\\ -2 & -3 & 3\\ -4 & -8 & 7 \end{pmatrix}$$

$$(d) \begin{pmatrix} -4 & 2 & -2\\ 0 & -2 & 0\\ 2 & -2 & 0 \end{pmatrix}$$

$$(e) \begin{pmatrix} -4 & -2 & 6\\ -4 & -6 & 6\\ -3 & -3 & 4 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - IV

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -7 & -6 & -7 \\ -6 & -3 & -6 \\ 2 & 6 & 2 \end{pmatrix} \qquad (b) \begin{pmatrix} 1 & 0 & -4 \\ 2 & -3 & -2 \\ 2 & 0 & -5 \end{pmatrix} \qquad (c) \begin{pmatrix} -1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2 \end{pmatrix}$$
$$(d) \begin{pmatrix} -1 & 1 & 0 \\ -1 & -3 & 0 \\ 1 & 1 & -2 \end{pmatrix} \qquad (e) \begin{pmatrix} -6 & 4 & 4 \\ -2 & 0 & 2 \\ -1 & 0 & 0 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

<u>Matrix Set - V</u>

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -7 & -6 & 5\\ 7 & 6 & -5\\ -4 & -4 & 4 \end{pmatrix} \qquad (b) \begin{pmatrix} -5 & 0 & 4\\ -2 & -1 & 2\\ -2 & 0 & 1 \end{pmatrix} \qquad (c) \begin{pmatrix} 1 & -1 & 0\\ -1 & 1 & 1\\ -1 & -1 & 2 \end{pmatrix}$$
$$(d) \begin{pmatrix} -1 & 2 & -2\\ 0 & -2 & 1\\ 0 & -1 & 0 \end{pmatrix} \qquad (e) \begin{pmatrix} 4 & 0 & -6\\ 3 & -2 & -3\\ 8 & -4 & -8 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - VI

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -7 & -3 & -5 \\ 7 & 3 & 5 \\ -1 & -1 & 1 \end{pmatrix} \qquad (b) \begin{pmatrix} -6 & -2 & 4 \\ 6 & 1 & -6 \\ -2 & -1 & 0 \end{pmatrix} \qquad (c) \begin{pmatrix} 3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3 \end{pmatrix}$$
$$(d) \begin{pmatrix} -3 & 4 & 0 \\ -1 & 1 & 0 \\ -2 & 4 & -1 \end{pmatrix} \qquad (e) \begin{pmatrix} 2 & -1 & -3 \\ -1 & 0 & 1 \\ 4 & -2 & -5 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - VII

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -6 & -8 & 5 \\ 7 & 9 & -5 \\ -6 & -6 & 7 \end{pmatrix} \qquad (b) \begin{pmatrix} -4 & 6 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad (c) \begin{pmatrix} 4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1 \end{pmatrix}$$
$$(d) \begin{pmatrix} -3 & 4 & 0 \\ -1 & 1 & 0 \\ -3 & 6 & -1 \end{pmatrix} \qquad (e) \begin{pmatrix} 0 & 1 & 0 \\ -1 & 2 & 0 \\ 2 & -3 & 1 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - VIII

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -6 & -6 & 3\\ 5 & 5 & -3\\ -4 & -4 & 3 \end{pmatrix} \qquad (b) \begin{pmatrix} 7 & -8 & -4\\ 0 & -1 & 0\\ 8 & -8 & -5 \end{pmatrix} \qquad (c) \begin{pmatrix} 2 & 0 & 3\\ 3 & -1 & 3\\ 6 & -6 & 2 \end{pmatrix}$$
$$(d) \begin{pmatrix} -1 & -8 & 4\\ 0 & -5 & 2\\ 0 & -8 & 3 \end{pmatrix} \qquad (e) \begin{pmatrix} 2 & -1 & 0\\ -2 & 1 & -1\\ 2 & 3 & 3 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - IX

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -6 & -5 & 4 \\ 6 & 5 & -4 \\ -3 & -3 & 3 \end{pmatrix} \qquad (b) \begin{pmatrix} -2 & 1 & -3 \\ 1 & -2 & 3 \\ 1 & -1 & 2 \end{pmatrix} \qquad (c) \begin{pmatrix} -2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1 \end{pmatrix}$$
$$(d) \begin{pmatrix} 3 & -4 & 0 \\ 1 & -1 & 0 \\ 2 & -4 & 1 \end{pmatrix} \qquad (e) \begin{pmatrix} -4 & -6 & -3 \\ 8 & 8 & 4 \\ 0 & 3 & 2 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - X

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -6 & 0 & -2 \\ -3 & 0 & -3 \\ 3 & 0 & -1 \end{pmatrix} \qquad (b) \begin{pmatrix} -1 & -2 & 6 \\ 0 & -3 & 6 \\ 0 & -1 & 2 \end{pmatrix} \qquad (c) \begin{pmatrix} -4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6 \end{pmatrix}$$
$$(d) \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & -6 \\ 0 & 0 & 1 \end{pmatrix} \qquad (e) \begin{pmatrix} 4 & -1 & -1 \\ 2 & -1 & -2 \\ -3 & 7 & 6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - XI

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -6 & 5 & -6 \\ -6 & 5 & -6 \\ 4 & -4 & 2 \end{pmatrix}$$

$$(b) \begin{pmatrix} -1 & 2 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$(c) \begin{pmatrix} -3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7 \end{pmatrix}$$

$$(d) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & -6 & 1 \end{pmatrix}$$

$$(e) \begin{pmatrix} 2 & 2 & 1 \\ 3 & 0 & -3 \\ -4 & 5 & 7 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - XII

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -6 & 8 & -6 \\ -8 & 9 & -8 \\ 3 & -4 & 3 \end{pmatrix}$$

$$(b) \begin{pmatrix} -3 & -8 & 8 \\ 0 & 1 & -4 \\ 0 & 0 & -3 \end{pmatrix}$$

$$(c) \begin{pmatrix} -1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2 \end{pmatrix}$$

$$(d) \begin{pmatrix} 2 & -8 & -4 \\ 0 & -2 & -2 \\ 0 & 8 & 6 \end{pmatrix}$$

$$(e) \begin{pmatrix} -1 & 1 & 2 \\ 2 & -2 & 5 \\ -2 & -1 & -6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - XIII

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -5 & -9 & 2\\ 2 & 6 & -2\\ -5 & -5 & 2 \end{pmatrix} \qquad (b) \begin{pmatrix} 1 & -6 & -3\\ 0 & -1 & -1\\ 0 & 2 & 2 \end{pmatrix} \qquad (c) \begin{pmatrix} 1 & -1 & 0\\ -1 & 1 & 1\\ -1 & -1 & 2 \end{pmatrix}$$
$$(d) \begin{pmatrix} 2 & 1 & 2\\ 1 & 2 & -2\\ -1 & 1 & 5 \end{pmatrix} \qquad (e) \begin{pmatrix} 0 & 2 & 4\\ -1 & 0 & 1\\ -2 & -2 & -6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - XIV

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -5 & -7 & 1 \\ 5 & 7 & -1 \\ -3 & -3 & 3 \end{pmatrix}$$

$$(b) \begin{pmatrix} 2 & 2 & 0 \\ 0 & 1 & 0 \\ -2 & -4 & 1 \end{pmatrix}$$

$$(c) \begin{pmatrix} 3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3 \end{pmatrix}$$

$$(d) \begin{pmatrix} 7 & -4 & -2 \\ 4 & -1 & -2 \\ 0 & 0 & 3 \end{pmatrix}$$

$$(e) \begin{pmatrix} -4 & -2 & 6 \\ -4 & -6 & 6 \\ -3 & -3 & 4 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - XV

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -5 & -6 & 0 \\ 4 & -3 & 4 \\ 6 & 6 & 1 \end{pmatrix} \qquad (b) \begin{pmatrix} -2 & 4 & 0 \\ 0 & 2 & 0 \\ -4 & 4 & 2 \end{pmatrix} \qquad (c) \begin{pmatrix} 4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1 \end{pmatrix}$$
$$(d) \begin{pmatrix} -1 & 2 & 2 \\ -1 & -4 & -1 \\ -1 & -1 & -4 \end{pmatrix} \qquad (e) \begin{pmatrix} -6 & 4 & 4 \\ -2 & 0 & 2 \\ -1 & 0 & 0 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - XVI

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -5 & -3 & 3\\ 2 & 0 & -2\\ -6 & -6 & 2 \end{pmatrix} \qquad (b) \begin{pmatrix} 2 & 0 & 0\\ 8 & -2 & -4\\ -4 & 2 & 4 \end{pmatrix} \qquad (c) \begin{pmatrix} 2 & 0 & 3\\ 3 & -1 & 3\\ 6 & -6 & 2 \end{pmatrix}$$
$$(d) \begin{pmatrix} 1 & -3 & 6\\ -1 & -1 & -2\\ -2 & 2 & -6 \end{pmatrix} \qquad (e) \begin{pmatrix} 4 & 0 & -6\\ 3 & -2 & -3\\ 8 & -4 & -8 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Sem-II Jan-Apr 2012

Tutorial-I

Matrix Set - XVII

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -5 & 0 & -2 \\ -3 & 1 & -3 \\ 3 & 0 & 0 \end{pmatrix} \qquad (b) \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 0 \\ -1 & -1 & 2 \end{pmatrix} \qquad (c) \begin{pmatrix} -2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1 \end{pmatrix}$$
$$(d) \begin{pmatrix} -4 & 2 & -2 \\ 0 & -2 & 0 \\ 2 & -2 & 0 \end{pmatrix} \qquad (e) \begin{pmatrix} 2 & -1 & -3 \\ -1 & 0 & 1 \\ 4 & -2 & -5 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - XVIII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -5 & 5 & 5 \\ -2 & 4 & 3 \\ -8 & 6 & 7 \end{pmatrix} \qquad (b) \begin{pmatrix} 6 & -4 & 1 \\ 3 & -1 & 1 \\ 0 & 0 & 3 \end{pmatrix} \qquad (c) \begin{pmatrix} -4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6 \end{pmatrix}$$
$$(d) \begin{pmatrix} -1 & 1 & 0 \\ -1 & -3 & 0 \\ 1 & 1 & -2 \end{pmatrix} \qquad (e) \begin{pmatrix} 0 & 1 & 0 \\ -1 & 2 & 0 \\ 2 & -3 & 1 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - XIX

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -5 & 6 & -4 \\ -6 & 6 & -6 \\ 2 & -3 & 1 \end{pmatrix} \qquad (b) \begin{pmatrix} 3 & -2 & -2 \\ 0 & 3 & 0 \\ 0 & -2 & 1 \end{pmatrix} \qquad (c) \begin{pmatrix} -3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7 \end{pmatrix}$$
$$(d) \begin{pmatrix} -1 & 2 & -2 \\ 0 & -2 & 1 \\ 0 & -1 & 0 \end{pmatrix} \qquad (e) \begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -1 \\ 2 & 3 & 3 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - XX

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -4 & -6 & 3\\ 5 & 7 & -3\\ -4 & -4 & 5 \end{pmatrix} \qquad (b) \begin{pmatrix} 5 & 0 & 2\\ 2 & 3 & 2\\ -4 & 0 & -1 \end{pmatrix} \qquad (c) \begin{pmatrix} -1 & 0 & 2\\ 0 & -3 & 6\\ 0 & -1 & 2 \end{pmatrix}$$
$$(d) \begin{pmatrix} -3 & 4 & 0\\ -1 & 1 & 0\\ -2 & 4 & -1 \end{pmatrix} \qquad (e) \begin{pmatrix} -4 & -6 & -3\\ 8 & 8 & 4\\ 0 & 3 & 2 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - XXI

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -4 & -5 & 3\\ 7 & 8 & -3\\ 5 & 5 & -2 \end{pmatrix}$$

$$(b) \begin{pmatrix} 1 & -1 & 0\\ 2 & 4 & 0\\ 4 & 2 & 3 \end{pmatrix}$$

$$(c) \begin{pmatrix} 1 & -1 & 0\\ -1 & 1 & 1\\ -1 & -1 & 2 \end{pmatrix}$$

$$(d) \begin{pmatrix} -3 & 4 & 0\\ -1 & 1 & 0\\ -3 & 6 & -1 \end{pmatrix}$$

$$(e) \begin{pmatrix} 4 & -1 & -1\\ 2 & -1 & -2\\ -3 & 7 & 6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - XXII

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -4 & -4 & -2 \\ 7 & 7 & 2 \\ 1 & 1 & 2 \end{pmatrix} \qquad (b) \begin{pmatrix} -3 & 4 & 4 \\ 0 & -3 & 0 \\ 0 & 2 & -1 \end{pmatrix} \qquad (c) \begin{pmatrix} 3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3 \end{pmatrix}$$
$$(d) \begin{pmatrix} -1 & -8 & 4 \\ 0 & -5 & 2 \\ 0 & -8 & 3 \end{pmatrix} \qquad (e) \begin{pmatrix} 2 & 2 & 1 \\ 3 & 0 & -3 \\ -4 & 5 & 7 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - XXIII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -4 & -4 & 1 \\ -3 & -3 & 3 \\ -6 & -6 & 3 \end{pmatrix}$$

$$(b) \begin{pmatrix} 0 & 0 & 3 \\ -2 & -2 & -3 \\ -2 & 0 & -5 \end{pmatrix}$$

$$(c) \begin{pmatrix} 4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1 \end{pmatrix}$$

$$(d) \begin{pmatrix} 3 & -4 & 0 \\ 1 & -1 & 0 \\ 2 & -4 & 1 \end{pmatrix}$$

$$(e) \begin{pmatrix} -1 & 1 & 2 \\ 2 & -2 & 5 \\ -2 & -1 & -6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - XXIV

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -4 & -4 & 5\\ 3 & 3 & -5\\ 4 & 4 & -5 \end{pmatrix} \qquad (b) \begin{pmatrix} -7 & 5 & -5\\ -5 & 3 & -5\\ 5 & -5 & 3 \end{pmatrix} \qquad (c) \begin{pmatrix} 2 & 0 & 3\\ 3 & -1 & 3\\ 6 & -6 & 2 \end{pmatrix}$$
$$(d) \begin{pmatrix} 1 & 0 & 0\\ 3 & 1 & -6\\ 0 & 0 & 1 \end{pmatrix} \qquad (e) \begin{pmatrix} 0 & 2 & 4\\ -1 & 0 & 1\\ -2 & -2 & -6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - XXV

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -4 & -3 & -1 \\ -2 & 3 & -2 \\ 2 & 6 & -1 \end{pmatrix}$$

$$(b) \begin{pmatrix} 1 & 0 & -4 \\ 2 & -3 & -2 \\ 2 & 0 & -5 \end{pmatrix}$$

$$(c) \begin{pmatrix} -2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1 \end{pmatrix}$$

$$(d) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & -6 & 1 \end{pmatrix}$$

$$(e) \begin{pmatrix} -4 & -2 & 6 \\ -4 & -6 & 6 \\ -3 & -3 & 4 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Sem-II Jan-Apr 2012

Matrix Set - XXVI

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -4 & -2 & -5 \\ 2 & 0 & 2 \\ 2 & 2 & 3 \end{pmatrix}$$

$$(b) \begin{pmatrix} -5 & 0 & 4 \\ -2 & -1 & 2 \\ -2 & 0 & 1 \end{pmatrix}$$

$$(c) \begin{pmatrix} -4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6 \end{pmatrix}$$

$$(d) \begin{pmatrix} 2 & -8 & -4 \\ 0 & -2 & -2 \\ 0 & 8 & 6 \end{pmatrix}$$

$$(e) \begin{pmatrix} -6 & 4 & 4 \\ -2 & 0 & 2 \\ -1 & 0 & 0 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Sem-II Jan-Apr 2012

Matrix Set - XXVII

EIGENVALUES AND EIGENVECTORS

Tutorial-I

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -4 & -1 & -3 \\ 3 & 0 & 3 \\ -1 & -1 & 0 \end{pmatrix} \qquad (b) \begin{pmatrix} -6 & -2 & 4 \\ 6 & 1 & -6 \\ -2 & -1 & 0 \end{pmatrix} \qquad (c) \begin{pmatrix} -3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7 \end{pmatrix}$$
$$(d) \begin{pmatrix} 2 & 1 & 2 \\ 1 & 2 & -2 \\ -1 & 1 & 5 \end{pmatrix} \qquad (e) \begin{pmatrix} 4 & 0 & -6 \\ 3 & -2 & -3 \\ 8 & -4 & -8 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - XXVIII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -4 & -1 & 2 \\ -4 & -1 & 2 \\ -5 & 1 & 1 \end{pmatrix} \qquad (b) \begin{pmatrix} -4 & 6 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad (c) \begin{pmatrix} -1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2 \end{pmatrix}$$
$$(d) \begin{pmatrix} 7 & -4 & -2 \\ 4 & -1 & -2 \\ 0 & 0 & 3 \end{pmatrix} \qquad (e) \begin{pmatrix} 2 & -1 & -3 \\ -1 & 0 & 1 \\ 4 & -2 & -5 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - XXIX

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -4 & 0 & -6 \\ 4 & 0 & 6 \\ 1 & 0 & 1 \end{pmatrix} \qquad (b) \begin{pmatrix} 7 & -8 & -4 \\ 0 & -1 & 0 \\ 8 & -8 & -5 \end{pmatrix} \qquad (c) \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2 \end{pmatrix}$$
$$(d) \begin{pmatrix} -1 & 2 & 2 \\ -1 & -4 & -1 \\ -1 & -1 & -4 \end{pmatrix} \qquad (e) \begin{pmatrix} 0 & 1 & 0 \\ -1 & 2 & 0 \\ 2 & -3 & 1 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - XXX

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -4 & 2 & 2 \\ -4 & 2 & 2 \\ 4 & -4 & -4 \end{pmatrix} \qquad (b) \begin{pmatrix} -2 & 1 & -3 \\ 1 & -2 & 3 \\ 1 & -1 & 2 \end{pmatrix} \qquad (c) \begin{pmatrix} 3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3 \end{pmatrix}$$
$$(d) \begin{pmatrix} 1 & -3 & 6 \\ -1 & -1 & -2 \\ -2 & 2 & -6 \end{pmatrix} \qquad (e) \begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -1 \\ 2 & 3 & 3 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - XXXI

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -4 & 4 & 4 \\ -7 & 7 & 4 \\ 7 & -7 & -4 \end{pmatrix}$$

$$(b) \begin{pmatrix} -1 & -2 & 6 \\ 0 & -3 & 6 \\ 0 & -1 & 2 \end{pmatrix}$$

$$(c) \begin{pmatrix} 4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1 \end{pmatrix}$$

$$(d) \begin{pmatrix} -4 & 2 & -2 \\ 0 & -2 & 0 \\ 2 & -2 & 0 \end{pmatrix}$$

$$(e) \begin{pmatrix} -4 & -6 & -3 \\ 8 & 8 & 4 \\ 0 & 3 & 2 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Sem-II Jan-Apr 2012

Matrix Set - XXXII

EIGENVALUES AND EIGENVECTORS

Tutorial-I

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -4 & 4 & 4 \\ -5 & 5 & 4 \\ 5 & -5 & -4 \end{pmatrix}$$

$$(b) \begin{pmatrix} -1 & 2 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$(c) \begin{pmatrix} 2 & 0 & 3 \\ 3 & -1 & 3 \\ 6 & -6 & 2 \end{pmatrix}$$

$$(d) \begin{pmatrix} -1 & 1 & 0 \\ -1 & -3 & 0 \\ 1 & 1 & -2 \end{pmatrix}$$

$$(e) \begin{pmatrix} 4 & -1 & -1 \\ 2 & -1 & -2 \\ -3 & 7 & 6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - XXXIII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -4 & 6 & 6 \\ -2 & 4 & 5 \\ -2 & 2 & 1 \end{pmatrix} \qquad (b) \begin{pmatrix} -3 & -8 & 8 \\ 0 & 1 & -4 \\ 0 & 0 & -3 \end{pmatrix} \qquad (c) \begin{pmatrix} -2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1 \end{pmatrix}$$
$$(d) \begin{pmatrix} -1 & 2 & -2 \\ 0 & -2 & 1 \\ 0 & -1 & 0 \end{pmatrix} \qquad (e) \begin{pmatrix} 2 & 2 & 1 \\ 3 & 0 & -3 \\ -4 & 5 & 7 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - XXXIV

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -4 & 6 & 6\\ 2 & 0 & 3\\ -6 & 6 & 3 \end{pmatrix} \qquad (b) \begin{pmatrix} 1 & -6 & -3\\ 0 & -1 & -1\\ 0 & 2 & 2 \end{pmatrix} \qquad (c) \begin{pmatrix} -4 & -8 & -7\\ 1 & -3 & 1\\ 3 & 7 & 6 \end{pmatrix}$$
$$(d) \begin{pmatrix} -3 & 4 & 0\\ -1 & 1 & 0\\ -2 & 4 & -1 \end{pmatrix} \qquad (e) \begin{pmatrix} -1 & 1 & 2\\ 2 & -2 & 5\\ -2 & -1 & -6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Tutorial-I

Matrix Set - XXXV

Jan-Apr 2012

Sem-II

Quantum Mechanics-I

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -3 & -7 & 1\\ 1 & 5 & -1\\ -5 & -5 & 3 \end{pmatrix} \qquad (b) \begin{pmatrix} 2 & 2 & 0\\ 0 & 1 & 0\\ -2 & -4 & 1 \end{pmatrix} \qquad (c) \begin{pmatrix} -3 & -2 & 3\\ -2 & -3 & 3\\ -4 & -8 & 7 \end{pmatrix}$$
$$(d) \begin{pmatrix} -3 & 4 & 0\\ -1 & 1 & 0\\ -3 & 6 & -1 \end{pmatrix} \qquad (e) \begin{pmatrix} 0 & 2 & 4\\ -1 & 0 & 1\\ -2 & -2 & -6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Tuto

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - XXXVI

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -3 & -6 & -4 \\ -5 & -2 & -5 \\ 6 & 6 & 7 \end{pmatrix}$$

$$(b) \begin{pmatrix} -2 & 4 & 0 \\ 0 & 2 & 0 \\ -4 & 4 & 2 \end{pmatrix}$$

$$(c) \begin{pmatrix} -1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2 \end{pmatrix}$$

$$(d) \begin{pmatrix} -1 & -8 & 4 \\ 0 & -5 & 2 \\ 0 & -8 & 3 \end{pmatrix}$$

$$(e) \begin{pmatrix} -4 & -2 & 6 \\ -4 & -6 & 6 \\ -3 & -3 & 4 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

_

Matrix Set - XXXVII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -3 & -4 & -6 \\ 5 & 6 & 6 \\ 5 & 5 & 7 \end{pmatrix}$$

$$(b) \begin{pmatrix} 2 & 0 & 0 \\ 8 & -2 & -4 \\ -4 & 2 & 4 \end{pmatrix}$$

$$(c) \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2 \end{pmatrix}$$

$$(d) \begin{pmatrix} 3 & -4 & 0 \\ 1 & -1 & 0 \\ 2 & -4 & 1 \end{pmatrix}$$

$$(e) \begin{pmatrix} -6 & 4 & 4 \\ -2 & 0 & 2 \\ -1 & 0 & 0 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - XXXVIII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -3 & -4 & -5 \\ -1 & 0 & -1 \\ 4 & 4 & 6 \end{pmatrix}$$

$$(b) \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 0 \\ -1 & -1 & 2 \end{pmatrix}$$

$$(c) \begin{pmatrix} 3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3 \end{pmatrix}$$

$$(d) \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & -6 \\ 0 & 0 & 1 \end{pmatrix}$$

$$(e) \begin{pmatrix} 4 & 0 & -6 \\ 3 & -2 & -3 \\ 8 & -4 & -8 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - XXXIX

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -3 & -3 & -5 \\ 4 & 4 & 5 \\ 4 & 4 & 5 \end{pmatrix}$$

$$(b) \begin{pmatrix} 6 & -4 & 1 \\ 3 & -1 & 1 \\ 0 & 0 & 3 \end{pmatrix}$$

$$(c) \begin{pmatrix} 4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1 \end{pmatrix}$$

$$(d) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & -6 & 1 \end{pmatrix}$$

$$(e) \begin{pmatrix} 2 & -1 & -3 \\ -1 & 0 & 1 \\ 4 & -2 & -5 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - XL

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$\begin{array}{l} (a) \begin{pmatrix} -3 & -3 & 0 \\ 4 & 2 & 2 \\ 3 & -3 & 6 \end{pmatrix} \\ (b) \begin{pmatrix} 3 & -2 & -2 \\ 0 & 3 & 0 \\ 0 & -2 & 1 \end{pmatrix} \\ (c) \begin{pmatrix} 2 & 0 & 3 \\ 3 & -1 & 3 \\ 6 & -6 & 2 \end{pmatrix} \\ (d) \begin{pmatrix} 2 & -8 & -4 \\ 0 & -2 & -2 \\ 0 & 8 & 6 \end{pmatrix} \\ (e) \begin{pmatrix} 0 & 1 & 0 \\ -1 & 2 & 0 \\ 2 & -3 & 1 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - XLI

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -3 & 0 & -8\\ 1 & -2 & 8\\ 4 & 0 & 9 \end{pmatrix}$$

$$(b) \begin{pmatrix} 5 & 0 & 2\\ 2 & 3 & 2\\ -4 & 0 & -1 \end{pmatrix}$$

$$(c) \begin{pmatrix} -2 & -6 & 3\\ 4 & 0 & 5\\ 2 & 4 & -1 \end{pmatrix}$$

$$(d) \begin{pmatrix} 2 & 1 & 2\\ 1 & 2 & -2\\ -1 & 1 & 5 \end{pmatrix}$$

$$(e) \begin{pmatrix} 2 & -1 & 0\\ -2 & 1 & -1\\ 2 & 3 & 3 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - XLII

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -3 & 1 & 1 \\ 5 & -3 & -3 \\ -7 & 3 & 3 \end{pmatrix}$$

$$(b) \begin{pmatrix} 1 & -1 & 0 \\ 2 & 4 & 0 \\ 4 & 2 & 3 \end{pmatrix}$$

$$(c) \begin{pmatrix} -4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6 \end{pmatrix}$$

$$(d) \begin{pmatrix} 7 & -4 & -2 \\ 4 & -1 & -2 \\ 0 & 0 & 3 \end{pmatrix}$$

$$(e) \begin{pmatrix} -4 & -6 & -3 \\ 8 & 8 & 4 \\ 0 & 3 & 2 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - XLIII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -3 & 5 & 5\\ 6 & -4 & 1\\ -6 & 6 & 1 \end{pmatrix} \qquad (b) \begin{pmatrix} -3 & 4 & 4\\ 0 & -3 & 0\\ 0 & 2 & -1 \end{pmatrix} \qquad (c) \begin{pmatrix} -3 & -2 & 3\\ -2 & -3 & 3\\ -4 & -8 & 7 \end{pmatrix}$$
$$(d) \begin{pmatrix} -1 & 2 & 2\\ -1 & -4 & -1\\ -1 & -1 & -4 \end{pmatrix} \qquad (e) \begin{pmatrix} 4 & -1 & -1\\ 2 & -1 & -2\\ -3 & 7 & 6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - XLIV

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -3 & 6 & -2\\ 4 & 2 & 4\\ 7 & -6 & 6 \end{pmatrix} \qquad (b) \begin{pmatrix} 0 & 0 & 3\\ -2 & -2 & -3\\ -2 & 0 & -5 \end{pmatrix} \qquad (c) \begin{pmatrix} -1 & 0 & 2\\ 0 & -3 & 6\\ 0 & -1 & 2 \end{pmatrix}$$
$$(d) \begin{pmatrix} 1 & -3 & 6\\ -1 & -1 & -2\\ -2 & 2 & -6 \end{pmatrix} \qquad (e) \begin{pmatrix} 2 & 2 & 1\\ 3 & 0 & -3\\ -4 & 5 & 7 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - XLV

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -2 & -5 & 1\\ 1 & 4 & -1\\ -3 & -3 & 2 \end{pmatrix}$$

$$(b) \begin{pmatrix} -7 & 5 & -5\\ -5 & 3 & -5\\ 5 & -5 & 3 \end{pmatrix}$$

$$(c) \begin{pmatrix} 1 & -1 & 0\\ -1 & 1 & 1\\ -1 & -1 & 2 \end{pmatrix}$$

$$(d) \begin{pmatrix} -4 & 2 & -2\\ 0 & -2 & 0\\ 2 & -2 & 0 \end{pmatrix}$$

$$(e) \begin{pmatrix} -1 & 1 & 2\\ 2 & -2 & 5\\ -2 & -1 & -6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - XLVI

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -2 & -3 & 1 \\ 5 & 6 & -1 \\ 3 & 3 & 0 \end{pmatrix} \qquad (b) \begin{pmatrix} 1 & 0 & -4 \\ 2 & -3 & -2 \\ 2 & 0 & -5 \end{pmatrix} \qquad (c) \begin{pmatrix} 3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3 \end{pmatrix}$$
$$(d) \begin{pmatrix} -1 & 1 & 0 \\ -1 & -3 & 0 \\ 1 & 1 & -2 \end{pmatrix} \qquad (e) \begin{pmatrix} 0 & 2 & 4 \\ -1 & 0 & 1 \\ -2 & -2 & -6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - XLVII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -2 & -1 & -5 \\ 4 & 3 & 5 \\ -2 & -2 & 4 \end{pmatrix}$$

$$(b) \begin{pmatrix} -5 & 0 & 4 \\ -2 & -1 & 2 \\ -2 & 0 & 1 \end{pmatrix}$$

$$(c) \begin{pmatrix} 4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1 \end{pmatrix}$$

$$(d) \begin{pmatrix} -1 & 2 & -2 \\ 0 & -2 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$

$$(e) \begin{pmatrix} -4 & -2 & 6 \\ -4 & -6 & 6 \\ -3 & -3 & 4 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

_

Matrix Set - XLVIII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -2 & 0 & -6 \\ 0 & -2 & 6 \\ 3 & 0 & 7 \end{pmatrix}$$

$$(b) \begin{pmatrix} -6 & -2 & 4 \\ 6 & 1 & -6 \\ -2 & -1 & 0 \end{pmatrix}$$

$$(c) \begin{pmatrix} 2 & 0 & 3 \\ 3 & -1 & 3 \\ 6 & -6 & 2 \end{pmatrix}$$

$$(d) \begin{pmatrix} -3 & 4 & 0 \\ -1 & 1 & 0 \\ -2 & 4 & -1 \end{pmatrix}$$

$$(e) \begin{pmatrix} -6 & 4 & 4 \\ -2 & 0 & 2 \\ -1 & 0 & 0 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - XLIX

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -2 & 0 & -6 \\ 3 & 1 & 6 \\ 3 & 3 & 4 \end{pmatrix} \qquad (b) \begin{pmatrix} -4 & 6 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad (c) \begin{pmatrix} -2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1 \end{pmatrix}$$
$$(d) \begin{pmatrix} -3 & 4 & 0 \\ -1 & 1 & 0 \\ -3 & 6 & -1 \end{pmatrix} \qquad (e) \begin{pmatrix} 4 & 0 & -6 \\ 3 & -2 & -3 \\ 8 & -4 & -8 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - L

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -2 & 0 & -4 \\ -1 & -3 & 4 \\ 2 & 0 & 4 \end{pmatrix}$$

$$(b) \begin{pmatrix} 7 & -8 & -4 \\ 0 & -1 & 0 \\ 8 & -8 & -5 \end{pmatrix}$$

$$(c) \begin{pmatrix} -4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6 \end{pmatrix}$$

$$(d) \begin{pmatrix} -1 & -8 & 4 \\ 0 & -5 & 2 \\ 0 & -8 & 3 \end{pmatrix}$$

$$(e) \begin{pmatrix} 2 & -1 & -3 \\ -1 & 0 & 1 \\ 4 & -2 & -5 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - LI

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -2 & 0 & 3 \\ -6 & 4 & 3 \\ -2 & 0 & 3 \end{pmatrix} \qquad (b) \begin{pmatrix} -2 & 1 & -3 \\ 1 & -2 & 3 \\ 1 & -1 & 2 \end{pmatrix} \qquad (c) \begin{pmatrix} -3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7 \end{pmatrix}$$
$$(d) \begin{pmatrix} 3 & -4 & 0 \\ 1 & -1 & 0 \\ 2 & -4 & 1 \end{pmatrix} \qquad (e) \begin{pmatrix} 0 & 1 & 0 \\ -1 & 2 & 0 \\ 2 & -3 & 1 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - LII

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -2 & 0 & 3\\ 0 & -2 & 6\\ -2 & 0 & 3 \end{pmatrix}$$

$$(b) \begin{pmatrix} -1 & -2 & 6\\ 0 & -3 & 6\\ 0 & -1 & 2 \end{pmatrix}$$

$$(c) \begin{pmatrix} -1 & 0 & 2\\ 0 & -3 & 6\\ 0 & -1 & 2 \end{pmatrix}$$

$$(d) \begin{pmatrix} 1 & 0 & 0\\ 3 & 1 & -6\\ 0 & 0 & 1 \end{pmatrix}$$

$$(e) \begin{pmatrix} 2 & -1 & 0\\ -2 & 1 & -1\\ 2 & 3 & 3 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - LIII

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -2 & 1 & 1 \\ -2 & 1 & 1 \\ 2 & -2 & -2 \end{pmatrix}$$

$$(b) \begin{pmatrix} -1 & 2 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$(c) \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2 \end{pmatrix}$$

$$(d) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & -6 & 1 \end{pmatrix}$$

$$(e) \begin{pmatrix} -4 & -6 & -3 \\ 8 & 8 & 4 \\ 0 & 3 & 2 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - LIV

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -2 & 2 & -6 \\ 2 & -2 & 6 \\ 2 & 2 & 2 \end{pmatrix}$$

$$(b) \begin{pmatrix} -3 & -8 & 8 \\ 0 & 1 & -4 \\ 0 & 0 & -3 \end{pmatrix}$$

$$(c) \begin{pmatrix} 3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3 \end{pmatrix}$$

$$(d) \begin{pmatrix} 2 & -8 & -4 \\ 0 & -2 & -2 \\ 0 & 8 & 6 \end{pmatrix}$$

$$(e) \begin{pmatrix} 4 & -1 & -1 \\ 2 & -1 & -2 \\ -3 & 7 & 6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - LV

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -2 & 2 & -2 \\ -5 & 6 & -7 \\ -1 & 2 & -3 \end{pmatrix} \qquad (b) \begin{pmatrix} 1 & -6 & -3 \\ 0 & -1 & -1 \\ 0 & 2 & 2 \end{pmatrix} \qquad (c) \begin{pmatrix} 4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1 \end{pmatrix}$$
$$(d) \begin{pmatrix} 2 & 1 & 2 \\ 1 & 2 & -2 \\ -1 & 1 & 5 \end{pmatrix} \qquad (e) \begin{pmatrix} 2 & 2 & 1 \\ 3 & 0 & -3 \\ -4 & 5 & 7 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - LVI

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -2 & 3 & 3\\ 2 & -1 & 1\\ -4 & 4 & 2 \end{pmatrix} \qquad (b) \begin{pmatrix} 2 & 2 & 0\\ 0 & 1 & 0\\ -2 & -4 & 1 \end{pmatrix} \qquad (c) \begin{pmatrix} 2 & 0 & 3\\ 3 & -1 & 3\\ 6 & -6 & 2 \end{pmatrix}$$
$$(d) \begin{pmatrix} 7 & -4 & -2\\ 4 & -1 & -2\\ 0 & 0 & 3 \end{pmatrix} \qquad (e) \begin{pmatrix} -1 & 1 & 2\\ 2 & -2 & 5\\ -2 & -1 & -6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - LVII

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -2 & 3 & 3 \\ 4 & -3 & 0 \\ -6 & 6 & 3 \end{pmatrix} \qquad (b) \begin{pmatrix} -2 & 4 & 0 \\ 0 & 2 & 0 \\ -4 & 4 & 2 \end{pmatrix} \qquad (c) \begin{pmatrix} -2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1 \end{pmatrix}$$
$$(d) \begin{pmatrix} -1 & 2 & 2 \\ -1 & -4 & -1 \\ -1 & -1 & -4 \end{pmatrix} \qquad (e) \begin{pmatrix} 0 & 2 & 4 \\ -1 & 0 & 1 \\ -2 & -2 & -6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - LVIII

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -1 & -3 & -3\\ 1 & 3 & 3\\ 1 & 1 & -1 \end{pmatrix} \qquad (b) \begin{pmatrix} 2 & 0 & 0\\ 8 & -2 & -4\\ -4 & 2 & 4 \end{pmatrix} \qquad (c) \begin{pmatrix} -4 & -8 & -7\\ 1 & -3 & 1\\ 3 & 7 & 6 \end{pmatrix}$$
$$(d) \begin{pmatrix} 1 & -3 & 6\\ -1 & -1 & -2\\ -2 & 2 & -6 \end{pmatrix} \qquad (e) \begin{pmatrix} -4 & -2 & 6\\ -4 & -6 & 6\\ -3 & -3 & 4 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - LIX

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -1 & -3 & 1\\ 1 & -1 & 1\\ 1 & 3 & -1 \end{pmatrix} \qquad (b) \begin{pmatrix} 1 & -1 & 0\\ 0 & 2 & 0\\ -1 & -1 & 2 \end{pmatrix} \qquad (c) \begin{pmatrix} -3 & -2 & 3\\ -2 & -3 & 3\\ -4 & -8 & 7 \end{pmatrix}$$
$$(d) \begin{pmatrix} -4 & 2 & -2\\ 0 & -2 & 0\\ 2 & -2 & 0 \end{pmatrix} \qquad (e) \begin{pmatrix} -6 & 4 & 4\\ -2 & 0 & 2\\ -1 & 0 & 0 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - LX

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -1 & -2 & -4 \\ 3 & 4 & 4 \\ 3 & 3 & 5 \end{pmatrix}$$

$$(b) \begin{pmatrix} 6 & -4 & 1 \\ 3 & -1 & 1 \\ 0 & 0 & 3 \end{pmatrix}$$

$$(c) \begin{pmatrix} -1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2 \end{pmatrix}$$

$$(d) \begin{pmatrix} -1 & 1 & 0 \\ -1 & -3 & 0 \\ 1 & 1 & -2 \end{pmatrix}$$

$$(e) \begin{pmatrix} 4 & 0 & -6 \\ 3 & -2 & -3 \\ 8 & -4 & -8 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - LXI

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -1 & -2 & -2 \\ -1 & -2 & -2 \\ 1 & -1 & -1 \end{pmatrix} \qquad (b) \begin{pmatrix} 3 & -2 & -2 \\ 0 & 3 & 0 \\ 0 & -2 & 1 \end{pmatrix} \qquad (c) \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2 \end{pmatrix}$$
$$(d) \begin{pmatrix} -1 & 2 & -2 \\ 0 & -2 & 1 \\ 0 & -1 & 0 \end{pmatrix} \qquad (e) \begin{pmatrix} 2 & -1 & -3 \\ -1 & 0 & 1 \\ 4 & -2 & -5 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - LXII

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -1 & -1 & -3 \\ -3 & -3 & 3 \\ -7 & -7 & 3 \end{pmatrix}$$

$$(b) \begin{pmatrix} 5 & 0 & 2 \\ 2 & 3 & 2 \\ -4 & 0 & -1 \end{pmatrix}$$

$$(c) \begin{pmatrix} 3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3 \end{pmatrix}$$

$$(d) \begin{pmatrix} -3 & 4 & 0 \\ -1 & 1 & 0 \\ -2 & 4 & -1 \end{pmatrix}$$

$$(e) \begin{pmatrix} 0 & 1 & 0 \\ -1 & 2 & 0 \\ 2 & -3 & 1 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - LXIII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -1 & -1 & -3 \\ 2 & 2 & 3 \\ 2 & 2 & 3 \end{pmatrix}$$

$$(b) \begin{pmatrix} 1 & -1 & 0 \\ 2 & 4 & 0 \\ 4 & 2 & 3 \end{pmatrix}$$

$$(c) \begin{pmatrix} 4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1 \end{pmatrix}$$

$$(d) \begin{pmatrix} -3 & 4 & 0 \\ -1 & 1 & 0 \\ -3 & 6 & -1 \end{pmatrix}$$

$$(e) \begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -1 \\ 2 & 3 & 3 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II

Matrix Set - LXIV

Jan-Apr 2012

Quantum Mechanics-I

EIGENVALUES AND EIGENVECTORS

Tutorial-I

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -1 & 0 & -8 \\ 4 & 3 & 8 \\ -4 & -4 & 7 \end{pmatrix}$$

$$(b) \begin{pmatrix} -3 & 4 & 4 \\ 0 & -3 & 0 \\ 0 & 2 & -1 \end{pmatrix}$$

$$(c) \begin{pmatrix} 2 & 0 & 3 \\ 3 & -1 & 3 \\ 6 & -6 & 2 \end{pmatrix}$$

$$(d) \begin{pmatrix} -1 & -8 & 4 \\ 0 & -5 & 2 \\ 0 & -8 & 3 \end{pmatrix}$$

$$(e) \begin{pmatrix} -4 & -6 & -3 \\ 8 & 8 & 4 \\ 0 & 3 & 2 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - LXV

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -1 & 0 & -6 \\ 3 & 2 & 6 \\ -3 & -3 & 5 \end{pmatrix}$$

$$(b) \begin{pmatrix} 0 & 0 & 3 \\ -2 & -2 & -3 \\ -2 & 0 & -5 \end{pmatrix}$$

$$(c) \begin{pmatrix} -2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1 \end{pmatrix}$$

$$(d) \begin{pmatrix} 3 & -4 & 0 \\ 1 & -1 & 0 \\ 2 & -4 & 1 \end{pmatrix}$$

$$(e) \begin{pmatrix} 4 & -1 & -1 \\ 2 & -1 & -2 \\ -3 & 7 & 6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II

Quantum Mechanics-I

Tutorial-I

Matrix Set - LXVI

Jan-Apr 2012

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -1 & 0 & -1 \\ 3 & 4 & -3 \\ 6 & 0 & 4 \end{pmatrix}$$

$$(b) \begin{pmatrix} -7 & 5 & -5 \\ -5 & 3 & -5 \\ 5 & -5 & 3 \end{pmatrix}$$

$$(c) \begin{pmatrix} -4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6 \end{pmatrix}$$

$$(d) \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & -6 \\ 0 & 0 & 1 \end{pmatrix}$$

$$(e) \begin{pmatrix} 2 & 2 & 1 \\ 3 & 0 & -3 \\ -4 & 5 & 7 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

-

Jan-Apr 2012

Matrix Set - LXVII

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -1 & 2 & 3 \\ 5 & 2 & 3 \\ -4 & -4 & -6 \end{pmatrix}$$

$$(b) \begin{pmatrix} 1 & 0 & -4 \\ 2 & -3 & -2 \\ 2 & 0 & -5 \end{pmatrix}$$

$$(c) \begin{pmatrix} -3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7 \end{pmatrix}$$

$$(d) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & -6 & 1 \end{pmatrix}$$

$$(e) \begin{pmatrix} -1 & 1 & 2 \\ 2 & -2 & 5 \\ -2 & -1 & -6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

-Matrix Set - LXVIII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -1 & 3 & -7 \\ -1 & -5 & 7 \\ -5 & -5 & 3 \end{pmatrix}$$

$$(b) \begin{pmatrix} -5 & 0 & 4 \\ -2 & -1 & 2 \\ -2 & 0 & 1 \end{pmatrix}$$

$$(c) \begin{pmatrix} -1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2 \end{pmatrix}$$

$$(d) \begin{pmatrix} 2 & -8 & -4 \\ 0 & -2 & -2 \\ 0 & 8 & 6 \end{pmatrix}$$

$$(e) \begin{pmatrix} 0 & 2 & 4 \\ -1 & 0 & 1 \\ -2 & -2 & -6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - LXIX

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -1 & 3 & -1 \\ 1 & -3 & 1 \\ -1 & -3 & -1 \end{pmatrix}$$

$$(b) \begin{pmatrix} -6 & -2 & 4 \\ 6 & 1 & -6 \\ -2 & -1 & 0 \end{pmatrix}$$

$$(c) \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2 \end{pmatrix}$$

$$(d) \begin{pmatrix} 2 & 1 & 2 \\ 1 & 2 & -2 \\ -1 & 1 & 5 \end{pmatrix}$$

$$(e) \begin{pmatrix} -4 & -2 & 6 \\ -4 & -6 & 6 \\ -3 & -3 & 4 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - LXX

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} -1 & 6 & 1 \\ 0 & 7 & -2 \\ 0 & 6 & 0 \end{pmatrix}$$

$$(b) \begin{pmatrix} -4 & 6 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$(c) \begin{pmatrix} 3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3 \end{pmatrix}$$

$$(d) \begin{pmatrix} 7 & -4 & -2 \\ 4 & -1 & -2 \\ 0 & 0 & 3 \end{pmatrix}$$

$$(e) \begin{pmatrix} -6 & 4 & 4 \\ -2 & 0 & 2 \\ -1 & 0 & 0 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Sem-II Jan-Apr 2012

Tutorial-I

Matrix Set - LXXI

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 0 & -6 & 5 \\ -3 & -3 & 5 \\ -2 & -8 & 9 \end{pmatrix}$$

$$(b) \begin{pmatrix} 7 & -8 & -4 \\ 0 & -1 & 0 \\ 8 & -8 & -5 \end{pmatrix}$$

$$(c) \begin{pmatrix} 4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1 \end{pmatrix}$$

$$(d) \begin{pmatrix} -1 & 2 & 2 \\ -1 & -4 & -1 \\ -1 & -1 & -4 \end{pmatrix}$$

$$(e) \begin{pmatrix} 4 & 0 & -6 \\ 3 & -2 & -3 \\ 8 & -4 & -8 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

-

Matrix Set - LXXII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 0 & -3 & -3 \\ -1 & -2 & -3 \\ 1 & -1 & 0 \end{pmatrix}$$

$$(b) \begin{pmatrix} -2 & 1 & -3 \\ 1 & -2 & 3 \\ 1 & -1 & 2 \end{pmatrix}$$

$$(c) \begin{pmatrix} 2 & 0 & 3 \\ 3 & -1 & 3 \\ 6 & -6 & 2 \end{pmatrix}$$

$$(d) \begin{pmatrix} 1 & -3 & 6 \\ -1 & -1 & -2 \\ -2 & 2 & -6 \end{pmatrix}$$

$$(e) \begin{pmatrix} 2 & -1 & -3 \\ -1 & 0 & 1 \\ 4 & -2 & -5 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

-

Matrix Set - LXXIII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 0 & -3 & 3 \\ -6 & 4 & -6 \\ -6 & 3 & -5 \end{pmatrix}$$

$$(b) \begin{pmatrix} -1 & -2 & 6 \\ 0 & -3 & 6 \\ 0 & -1 & 2 \end{pmatrix}$$

$$(c) \begin{pmatrix} -2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1 \end{pmatrix}$$

$$(d) \begin{pmatrix} -4 & 2 & -2 \\ 0 & -2 & 0 \\ 2 & -2 & 0 \end{pmatrix}$$

$$(e) \begin{pmatrix} 0 & 1 & 0 \\ -1 & 2 & 0 \\ 2 & -3 & 1 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

UNIVERSITY OF HYDERABAD SCHOOL OF PHYSICS

M.Sc.Physics (2011-12)

Tutorial-I

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Matrix Set - LXXIV

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 0 & -2 & -2 \\ -1 & -1 & -2 \\ 1 & -1 & 0 \end{pmatrix}$$

$$(b) \begin{pmatrix} -1 & 2 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$(c) \begin{pmatrix} -4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6 \end{pmatrix}$$

$$(d) \begin{pmatrix} -1 & 1 & 0 \\ -1 & -3 & 0 \\ 1 & 1 & -2 \end{pmatrix}$$

$$(e) \begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -1 \\ 2 & 3 & 3 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - LXXV

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$\begin{array}{l} (a) \begin{pmatrix} 0 & 0 & -4 \\ 2 & 0 & 6 \\ 2 & 0 & 6 \end{pmatrix} \\ (b) \begin{pmatrix} -3 & -8 & 8 \\ 0 & 1 & -4 \\ 0 & 0 & -3 \end{pmatrix} \\ (c) \begin{pmatrix} -3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7 \end{pmatrix} \\ (d) \begin{pmatrix} -1 & 2 & -2 \\ 0 & -2 & 1 \\ 0 & -1 & 0 \end{pmatrix} \\ (e) \begin{pmatrix} -4 & -6 & -3 \\ 8 & 8 & 4 \\ 0 & 3 & 2 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

UNIVERSITY OF HYDERABAD SCHOOL OF PHYSICS

M.Sc.Physics (2011-12)

Tutorial-I

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Matrix Set - LXXVI

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$\begin{array}{l} (a) \begin{pmatrix} 0 & 0 & -4 \\ 2 & 2 & 4 \\ 2 & 2 & 4 \end{pmatrix} \\ (b) \begin{pmatrix} 1 & -6 & -3 \\ 0 & -1 & -1 \\ 0 & 2 & 2 \end{pmatrix} \\ (c) \begin{pmatrix} -1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2 \end{pmatrix} \\ (d) \begin{pmatrix} -3 & 4 & 0 \\ -1 & 1 & 0 \\ -2 & 4 & -1 \end{pmatrix} \\ (e) \begin{pmatrix} 4 & -1 & -1 \\ 2 & -1 & -2 \\ -3 & 7 & 6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

-

Matrix Set - LXXVII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

-

Matrix Set - LXXVIII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 0 & 2 & 0 \\ 2 & 1 & 2 \\ 2 & -2 & 2 \end{pmatrix} \qquad (b) \begin{pmatrix} -2 & 4 & 0 \\ 0 & 2 & 0 \\ -4 & 4 & 2 \end{pmatrix} \qquad (c) \begin{pmatrix} 3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3 \end{pmatrix}$$
$$(d) \begin{pmatrix} -1 & -8 & 4 \\ 0 & -5 & 2 \\ 0 & -8 & 3 \end{pmatrix} \qquad (e) \begin{pmatrix} -1 & 1 & 2 \\ 2 & -2 & 5 \\ -2 & -1 & -6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

UNIVERSITY OF HYDERABAD SCHOOL OF PHYSICS

M.Sc.Physics (2011-12)

Tutorial-I

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Matrix Set - LXXIX

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 0 & 2 & 7 \\ 0 & 1 & -4 \\ 0 & 2 & 7 \end{pmatrix} \qquad (b) \begin{pmatrix} 2 & 0 & 0 \\ 8 & -2 & -4 \\ -4 & 2 & 4 \end{pmatrix} \qquad (c) \begin{pmatrix} 4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1 \end{pmatrix}$$
$$(d) \begin{pmatrix} 3 & -4 & 0 \\ 1 & -1 & 0 \\ 2 & -4 & 1 \end{pmatrix} \qquad (e) \begin{pmatrix} 0 & 2 & 4 \\ -1 & 0 & 1 \\ -2 & -2 & -6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

nics-I

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - LXXX

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

UNIVERSITY OF HYDERABAD SCHOOL OF PHYSICS

M.Sc.Physics (2011-12)

Tutorial-I

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Matrix Set - LXXXI

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 0 & 4 & -6 \\ 1 & -3 & 6 \\ 1 & 1 & 2 \end{pmatrix}$$

$$(b) \begin{pmatrix} 6 & -4 & 1 \\ 3 & -1 & 1 \\ 0 & 0 & 3 \end{pmatrix}$$

$$(c) \begin{pmatrix} -2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1 \end{pmatrix}$$

$$(d) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & -6 & 1 \end{pmatrix}$$

$$(e) \begin{pmatrix} -6 & 4 & 4 \\ -2 & 0 & 2 \\ -1 & 0 & 0 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - LXXXII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

-

Matrix Set - LXXXIII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 1 & -2 & 0 \\ -3 & 0 & -3 \\ 2 & 2 & 3 \end{pmatrix}$$

$$(b) \begin{pmatrix} 5 & 0 & 2 \\ 2 & 3 & 2 \\ -4 & 0 & -1 \end{pmatrix}$$

$$(c) \begin{pmatrix} -3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7 \end{pmatrix}$$

$$(d) \begin{pmatrix} 2 & 1 & 2 \\ 1 & 2 & -2 \\ -1 & 1 & 5 \end{pmatrix}$$

$$(e) \begin{pmatrix} 2 & -1 & -3 \\ -1 & 0 & 1 \\ 4 & -2 & -5 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

-

Matrix Set - LXXXIV

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 1 & -1 & 1 \\ 5 & -3 & 1 \\ 3 & -1 & -1 \end{pmatrix}$$

$$(b) \begin{pmatrix} 1 & -1 & 0 \\ 2 & 4 & 0 \\ 4 & 2 & 3 \end{pmatrix}$$

$$(c) \begin{pmatrix} -1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2 \end{pmatrix}$$

$$(d) \begin{pmatrix} 7 & -4 & -2 \\ 4 & -1 & -2 \\ 0 & 0 & 3 \end{pmatrix}$$

$$(e) \begin{pmatrix} 0 & 1 & 0 \\ -1 & 2 & 0 \\ 2 & -3 & 1 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

_

Matrix Set - LXXXV

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 1 & -1 & 2 \\ 0 & 2 & -2 \\ 1 & 1 & 0 \end{pmatrix}$$

$$(b) \begin{pmatrix} -3 & 4 & 4 \\ 0 & -3 & 0 \\ 0 & 2 & -1 \end{pmatrix}$$

$$(c) \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2 \end{pmatrix}$$

$$(d) \begin{pmatrix} -1 & 2 & 2 \\ -1 & -4 & -1 \\ -1 & -1 & -4 \end{pmatrix}$$

$$(e) \begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -1 \\ 2 & 3 & 3 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

-

Matrix Set - LXXXVI

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 1 & 0 & -4 \\ 2 & 3 & 4 \\ 2 & 2 & 5 \end{pmatrix}$$

$$(b) \begin{pmatrix} 0 & 0 & 3 \\ -2 & -2 & -3 \\ -2 & 0 & -5 \end{pmatrix}$$

$$(c) \begin{pmatrix} 3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3 \end{pmatrix}$$

$$(d) \begin{pmatrix} 1 & -3 & 6 \\ -1 & -1 & -2 \\ -2 & 2 & -6 \end{pmatrix}$$

$$(e) \begin{pmatrix} -4 & -6 & -3 \\ 8 & 8 & 4 \\ 0 & 3 & 2 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - LXXXVII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 1 & 0 & -2 \\ 1 & 0 & 4 \\ 1 & 0 & 4 \end{pmatrix}$$

$$(b) \begin{pmatrix} -7 & 5 & -5 \\ -5 & 3 & -5 \\ 5 & -5 & 3 \end{pmatrix}$$

$$(c) \begin{pmatrix} 4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1 \end{pmatrix}$$

$$(d) \begin{pmatrix} -4 & 2 & -2 \\ 0 & -2 & 0 \\ 2 & -2 & 0 \end{pmatrix}$$

$$(e) \begin{pmatrix} 4 & -1 & -1 \\ 2 & -1 & -2 \\ -3 & 7 & 6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - LXXXVIII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 1 & 0 & 6 \\ -6 & -5 & -6 \\ 6 & 6 & -2 \end{pmatrix}$$

$$(b) \begin{pmatrix} 1 & 0 & -4 \\ 2 & -3 & -2 \\ 2 & 0 & -5 \end{pmatrix}$$

$$(c) \begin{pmatrix} 2 & 0 & 3 \\ 3 & -1 & 3 \\ 6 & -6 & 2 \end{pmatrix}$$

$$(d) \begin{pmatrix} -1 & 1 & 0 \\ -1 & -3 & 0 \\ 1 & 1 & -2 \end{pmatrix}$$

$$(e) \begin{pmatrix} 2 & 2 & 1 \\ 3 & 0 & -3 \\ -4 & 5 & 7 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - LXXXIX

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 1 & 1 & -3 \\ 0 & 0 & 3 \\ -2 & -2 & 3 \end{pmatrix} \qquad (b) \begin{pmatrix} -5 & 0 & 4 \\ -2 & -1 & 2 \\ -2 & 0 & 1 \end{pmatrix} \qquad (c) \begin{pmatrix} -2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1 \end{pmatrix}$$
$$(d) \begin{pmatrix} -1 & 2 & -2 \\ 0 & -2 & 1 \\ 0 & -1 & 0 \end{pmatrix} \qquad (e) \begin{pmatrix} -1 & 1 & 2 \\ 2 & -2 & 5 \\ -2 & -1 & -6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - XC

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 1 & 1 & -3 \\ 1 & 1 & 3 \\ 1 & 1 & 3 \end{pmatrix}$$

$$(b) \begin{pmatrix} -6 & -2 & 4 \\ 6 & 1 & -6 \\ -2 & -1 & 0 \end{pmatrix}$$

$$(c) \begin{pmatrix} -4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6 \end{pmatrix}$$

$$(d) \begin{pmatrix} -3 & 4 & 0 \\ -1 & 1 & 0 \\ -2 & 4 & -1 \end{pmatrix}$$

$$(e) \begin{pmatrix} 0 & 2 & 4 \\ -1 & 0 & 1 \\ -2 & -2 & -6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - XCI

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 1 & 1 & -1 \\ -1 & -1 & 1 \\ 5 & -1 & -5 \end{pmatrix}$$

$$(b) \begin{pmatrix} -4 & 6 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$(c) \begin{pmatrix} -3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7 \end{pmatrix}$$

$$(d) \begin{pmatrix} -3 & 4 & 0 \\ -1 & 1 & 0 \\ -3 & 6 & -1 \end{pmatrix}$$

$$(e) \begin{pmatrix} -4 & -2 & 6 \\ -4 & -6 & 6 \\ -3 & -3 & 4 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - XCII

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 1 & 1 & 1 \\ 0 & -3 & -6 \\ -2 & 1 & 4 \end{pmatrix} \qquad (b) \begin{pmatrix} 7 & -8 & -4 \\ 0 & -1 & 0 \\ 8 & -8 & -5 \end{pmatrix} \qquad (c) \begin{pmatrix} -1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2 \end{pmatrix}$$
$$(d) \begin{pmatrix} -1 & -8 & 4 \\ 0 & -5 & 2 \\ 0 & -8 & 3 \end{pmatrix} \qquad (e) \begin{pmatrix} -6 & 4 & 4 \\ -2 & 0 & 2 \\ -1 & 0 & 0 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - XCIII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 1 & 2 & -8 \\ 1 & 0 & 8 \\ -5 & -5 & 7 \end{pmatrix}$$

$$(b) \begin{pmatrix} -2 & 1 & -3 \\ 1 & -2 & 3 \\ 1 & -1 & 2 \end{pmatrix}$$

$$(c) \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2 \end{pmatrix}$$

$$(d) \begin{pmatrix} 3 & -4 & 0 \\ 1 & -1 & 0 \\ 2 & -4 & 1 \end{pmatrix}$$

$$(e) \begin{pmatrix} 4 & 0 & -6 \\ 3 & -2 & -3 \\ 8 & -4 & -8 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Sem-II Jan-Apr 2012

Matrix Set - XCIV

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 1 & 2 & -2 \\ -3 & 9 & -9 \\ 1 & 2 & -2 \end{pmatrix}$$

$$(b) \begin{pmatrix} -1 & -2 & 6 \\ 0 & -3 & 6 \\ 0 & -1 & 2 \end{pmatrix}$$

$$(c) \begin{pmatrix} 3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3 \end{pmatrix}$$

$$(d) \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & -6 \\ 0 & 0 & 1 \end{pmatrix}$$

$$(e) \begin{pmatrix} 2 & -1 & -3 \\ -1 & 0 & 1 \\ 4 & -2 & -5 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

achanica I

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - XCV

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
 - $(a) \begin{pmatrix} 1 & 2 & 3 \\ 0 & -6 & -6 \\ 0 & 4 & 4 \end{pmatrix} \qquad (b) \begin{pmatrix} -1 & 2 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad (c) \begin{pmatrix} 4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1 \end{pmatrix}$ $(d) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & -6 & 1 \end{pmatrix} \qquad (e) \begin{pmatrix} 0 & 1 & 0 \\ -1 & 2 & 0 \\ 2 & -3 & 1 \end{pmatrix}$
- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - XCVI

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 1 & 3 & 3 \\ -9 & 1 & -3 \\ 9 & -3 & 1 \end{pmatrix}$$

$$(b) \begin{pmatrix} -3 & -8 & 8 \\ 0 & 1 & -4 \\ 0 & 0 & -3 \end{pmatrix}$$

$$(c) \begin{pmatrix} 2 & 0 & 3 \\ 3 & -1 & 3 \\ 6 & -6 & 2 \end{pmatrix}$$

$$(d) \begin{pmatrix} 2 & -8 & -4 \\ 0 & -2 & -2 \\ 0 & 8 & 6 \end{pmatrix}$$

$$(e) \begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -1 \\ 2 & 3 & 3 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

UNIVERSITY OF HYDERABAD SCHOOL OF PHYSICS

M.Sc.Physics (2011-12)

Sem-II

Quantum Mechanics-I

Tutorial-I

Matrix Set - XCVII

Jan-Apr 2012

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 1 & 4 & 2 \\ -4 & 6 & -4 \\ -1 & -2 & -2 \end{pmatrix} \qquad (b) \begin{pmatrix} 1 & -6 & -3 \\ 0 & -1 & -1 \\ 0 & 2 & 2 \end{pmatrix} \qquad (c) \begin{pmatrix} -2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1 \end{pmatrix}$$
$$(d) \begin{pmatrix} 2 & 1 & 2 \\ 1 & 2 & -2 \\ -1 & 1 & 5 \end{pmatrix} \qquad (e) \begin{pmatrix} -4 & -6 & -3 \\ 8 & 8 & 4 \\ 0 & 3 & 2 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - XCVIII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 2 & -5 & 3 \\ 1 & -4 & 3 \\ 3 & -9 & 6 \end{pmatrix}$$

$$(b) \begin{pmatrix} 2 & 2 & 0 \\ 0 & 1 & 0 \\ -2 & -4 & 1 \end{pmatrix}$$

$$(c) \begin{pmatrix} -4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6 \end{pmatrix}$$

$$(d) \begin{pmatrix} 7 & -4 & -2 \\ 4 & -1 & -2 \\ 0 & 0 & 3 \end{pmatrix}$$

$$(e) \begin{pmatrix} 4 & -1 & -1 \\ 2 & -1 & -2 \\ -3 & 7 & 6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Sem-II Jan-Apr 2012

Matrix Set - XCIX

EIGENVALUES AND EIGENVECTORS

Tutorial-I

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 2 & -4 & -3 \\ -4 & 8 & 6 \\ 2 & -8 & -5 \end{pmatrix} \qquad (b) \begin{pmatrix} -2 & 4 & 0 \\ 0 & 2 & 0 \\ -4 & 4 & 2 \end{pmatrix} \qquad (c) \begin{pmatrix} -3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7 \end{pmatrix}$$
$$(d) \begin{pmatrix} -1 & 2 & 2 \\ -1 & -4 & -1 \\ -1 & -1 & -4 \end{pmatrix} \qquad (e) \begin{pmatrix} 2 & 2 & 1 \\ 3 & 0 & -3 \\ -4 & 5 & 7 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - C

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 2 & -4 & -2 \\ -1 & 1 & -2 \\ 0 & 2 & 3 \end{pmatrix}$$

$$(b) \begin{pmatrix} 2 & 0 & 0 \\ 8 & -2 & -4 \\ -4 & 2 & 4 \end{pmatrix}$$

$$(c) \begin{pmatrix} -1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2 \end{pmatrix}$$

$$(d) \begin{pmatrix} 1 & -3 & 6 \\ -1 & -1 & -2 \\ -2 & 2 & -6 \end{pmatrix}$$

$$(e) \begin{pmatrix} -1 & 1 & 2 \\ 2 & -2 & 5 \\ -2 & -1 & -6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - CI

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 2 & -4 & -1 \\ -5 & 1 & -5 \\ 4 & 4 & 7 \end{pmatrix}$$

$$(b) \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 0 \\ -1 & -1 & 2 \end{pmatrix}$$

$$(c) \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2 \end{pmatrix}$$

$$(d) \begin{pmatrix} -4 & 2 & -2 \\ 0 & -2 & 0 \\ 2 & -2 & 0 \end{pmatrix}$$

$$(e) \begin{pmatrix} 0 & 2 & 4 \\ -1 & 0 & 1 \\ -2 & -2 & -6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - CII

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 2 & -3 & 1 \\ -2 & 5 & -2 \\ -2 & 6 & -1 \end{pmatrix}$$

$$(b) \begin{pmatrix} 6 & -4 & 1 \\ 3 & -1 & 1 \\ 0 & 0 & 3 \end{pmatrix}$$

$$(c) \begin{pmatrix} 3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3 \end{pmatrix}$$

$$(d) \begin{pmatrix} -1 & 1 & 0 \\ -1 & -3 & 0 \\ 1 & 1 & -2 \end{pmatrix}$$

$$(e) \begin{pmatrix} -4 & -2 & 6 \\ -4 & -6 & 6 \\ -3 & -3 & 4 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - CIII

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - CIV

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 2 & -2 & 1 \\ -4 & 0 & -4 \\ 2 & 2 & 3 \end{pmatrix} \qquad (b) \begin{pmatrix} 5 & 0 & 2 \\ 2 & 3 & 2 \\ -4 & 0 & -1 \end{pmatrix} \qquad (c) \begin{pmatrix} 2 & 0 & 3 \\ 3 & -1 & 3 \\ 6 & -6 & 2 \end{pmatrix}$$
$$(d) \begin{pmatrix} -3 & 4 & 0 \\ -1 & 1 & 0 \\ -2 & 4 & -1 \end{pmatrix} \qquad (e) \begin{pmatrix} 4 & 0 & -6 \\ 3 & -2 & -3 \\ 8 & -4 & -8 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - CV

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$\begin{array}{l} (a) \begin{pmatrix} 2 & 0 & -2 \\ -4 & -2 & 2 \\ 1 & 0 & 5 \end{pmatrix} \\ (b) \begin{pmatrix} 1 & -1 & 0 \\ 2 & 4 & 0 \\ 4 & 2 & 3 \end{pmatrix} \\ (c) \begin{pmatrix} -2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1 \end{pmatrix} \\ (d) \begin{pmatrix} -3 & 4 & 0 \\ -1 & 1 & 0 \\ -3 & 6 & -1 \end{pmatrix} \\ (e) \begin{pmatrix} 2 & -1 & -3 \\ -1 & 0 & 1 \\ 4 & -2 & -5 \end{pmatrix} \end{array}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - CVI

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 2 & 2 & 2 \\ -6 & 2 & -2 \\ 6 & -2 & 2 \end{pmatrix}$$

$$(b) \begin{pmatrix} -3 & 4 & 4 \\ 0 & -3 & 0 \\ 0 & 2 & -1 \end{pmatrix}$$

$$(c) \begin{pmatrix} -4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6 \end{pmatrix}$$

$$(d) \begin{pmatrix} -1 & -8 & 4 \\ 0 & -5 & 2 \\ 0 & -8 & 3 \end{pmatrix}$$

$$(e) \begin{pmatrix} 0 & 1 & 0 \\ -1 & 2 & 0 \\ 2 & -3 & 1 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - CVII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 2 & 2 & 2 \\ -5 & -6 & -7 \\ 1 & 2 & 3 \end{pmatrix} \qquad (b) \begin{pmatrix} 0 & 0 & 3 \\ -2 & -2 & -3 \\ -2 & 0 & -5 \end{pmatrix} \qquad (c) \begin{pmatrix} -3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7 \end{pmatrix}$$
$$(d) \begin{pmatrix} 3 & -4 & 0 \\ 1 & -1 & 0 \\ 2 & -4 & 1 \end{pmatrix} \qquad (e) \begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -1 \\ 2 & 3 & 3 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - CVIII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 2 & 2 & 2 \\ 4 & 1 & 4 \\ 1 & -2 & 1 \end{pmatrix} \qquad (b) \begin{pmatrix} -7 & 5 & -5 \\ -5 & 3 & -5 \\ 5 & -5 & 3 \end{pmatrix} \qquad (c) \begin{pmatrix} -1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2 \end{pmatrix}$$
$$(d) \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & -6 \\ 0 & 0 & 1 \end{pmatrix} \qquad (e) \begin{pmatrix} -4 & -6 & -3 \\ 8 & 8 & 4 \\ 0 & 3 & 2 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - CIX

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$\begin{array}{l} (a) \begin{pmatrix} 2 & 3 & 1 \\ -2 & -3 & -1 \\ -4 & -4 & -2 \end{pmatrix} \\ (b) \begin{pmatrix} 1 & 0 & -4 \\ 2 & -3 & -2 \\ 2 & 0 & -5 \end{pmatrix} \\ (c) \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2 \end{pmatrix} \\ (d) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & -6 & 1 \end{pmatrix} \\ (e) \begin{pmatrix} 4 & -1 & -1 \\ 2 & -1 & -2 \\ -3 & 7 & 6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - CX

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 2 & 3 & 1 \\ 3 & 4 & -3 \\ 7 & 9 & -4 \end{pmatrix} \qquad (b) \begin{pmatrix} -5 & 0 & 4 \\ -2 & -1 & 2 \\ -2 & 0 & 1 \end{pmatrix} \qquad (c) \begin{pmatrix} 3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3 \end{pmatrix}$$
$$(d) \begin{pmatrix} 2 & -8 & -4 \\ 0 & -2 & -2 \\ 0 & 8 & 6 \end{pmatrix} \qquad (e) \begin{pmatrix} 2 & 2 & 1 \\ 3 & 0 & -3 \\ -4 & 5 & 7 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - CXI

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 2 & 3 & 3 \\ -3 & 4 & 1 \\ 3 & -5 & -2 \end{pmatrix}$$

$$(b) \begin{pmatrix} -6 & -2 & 4 \\ 6 & 1 & -6 \\ -2 & -1 & 0 \end{pmatrix}$$

$$(c) \begin{pmatrix} 4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1 \end{pmatrix}$$

$$(d) \begin{pmatrix} 2 & 1 & 2 \\ 1 & 2 & -2 \\ -1 & 1 & 5 \end{pmatrix}$$

$$(e) \begin{pmatrix} -1 & 1 & 2 \\ 2 & -2 & 5 \\ -2 & -1 & -6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - CXII

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 2 & 3 & 3 \\ -2 & -3 & -2 \\ -6 & -6 & 5 \end{pmatrix} \qquad (b) \begin{pmatrix} -4 & 6 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad (c) \begin{pmatrix} 2 & 0 & 3 \\ 3 & -1 & 3 \\ 6 & -6 & 2 \end{pmatrix}$$
$$(d) \begin{pmatrix} 7 & -4 & -2 \\ 4 & -1 & -2 \\ 0 & 0 & 3 \end{pmatrix} \qquad (e) \begin{pmatrix} 0 & 2 & 4 \\ -1 & 0 & 1 \\ -2 & -2 & -6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - CXIII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 3 & -6 & 0 \\ -1 & 0 & -2 \\ -1 & 3 & 1 \end{pmatrix}$$

$$(b) \begin{pmatrix} 7 & -8 & -4 \\ 0 & -1 & 0 \\ 8 & -8 & -5 \end{pmatrix}$$

$$(c) \begin{pmatrix} -2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1 \end{pmatrix}$$

$$(d) \begin{pmatrix} -1 & 2 & 2 \\ -1 & -4 & -1 \\ -1 & -1 & -4 \end{pmatrix}$$

$$(e) \begin{pmatrix} -4 & -2 & 6 \\ -4 & -6 & 6 \\ -3 & -3 & 4 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - CXIV

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 3 & -1 & 1 \\ 5 & -1 & 1 \\ 3 & -1 & 1 \end{pmatrix} \qquad (b) \begin{pmatrix} -2 & 1 & -3 \\ 1 & -2 & 3 \\ 1 & -1 & 2 \end{pmatrix} \qquad (c) \begin{pmatrix} -4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6 \end{pmatrix}$$
$$(d) \begin{pmatrix} 1 & -3 & 6 \\ -1 & -1 & -2 \\ -2 & 2 & -6 \end{pmatrix} \qquad (e) \begin{pmatrix} -6 & 4 & 4 \\ -2 & 0 & 2 \\ -1 & 0 & 0 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - CXV

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 3 & 0 & -6 \\ -1 & -1 & 1 \\ 1 & -2 & -4 \end{pmatrix} \qquad (b) \begin{pmatrix} -1 & -2 & 6 \\ 0 & -3 & 6 \\ 0 & -1 & 2 \end{pmatrix} \qquad (c) \begin{pmatrix} -3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7 \end{pmatrix}$$
$$(d) \begin{pmatrix} -4 & 2 & -2 \\ 0 & -2 & 0 \\ 2 & -2 & 0 \end{pmatrix} \qquad (e) \begin{pmatrix} 4 & 0 & -6 \\ 3 & -2 & -3 \\ 8 & -4 & -8 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

-

Jan-Apr 2012

Matrix Set - CXVI

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 3 & 0 & -3 \\ -6 & 6 & -6 \\ 2 & 0 & -2 \end{pmatrix} \qquad (b) \begin{pmatrix} -1 & 2 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad (c) \begin{pmatrix} -1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2 \end{pmatrix}$$
$$(d) \begin{pmatrix} -1 & 1 & 0 \\ -1 & -3 & 0 \\ 1 & 1 & -2 \end{pmatrix} \qquad (e) \begin{pmatrix} 2 & -1 & -3 \\ -1 & 0 & 1 \\ 4 & -2 & -5 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Tutorial-I

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Matrix Set - CXVII

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 3 & 0 & 2 \\ 6 & -1 & 0 \\ -3 & 2 & 4 \end{pmatrix} \qquad (b) \begin{pmatrix} -3 & -8 & 8 \\ 0 & 1 & -4 \\ 0 & 0 & -3 \end{pmatrix} \qquad (c) \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2 \end{pmatrix}$$
$$(d) \begin{pmatrix} -1 & 2 & -2 \\ 0 & -2 & 1 \\ 0 & -1 & 0 \end{pmatrix} \qquad (e) \begin{pmatrix} 0 & 1 & 0 \\ -1 & 2 & 0 \\ 2 & -3 & 1 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

_

Matrix Set - CXVIII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 3 & 1 & 2 \\ -2 & 0 & -2 \\ -5 & -1 & -4 \end{pmatrix}$$

$$(b) \begin{pmatrix} 1 & -6 & -3 \\ 0 & -1 & -1 \\ 0 & 2 & 2 \end{pmatrix}$$

$$(c) \begin{pmatrix} 3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3 \end{pmatrix}$$

$$(d) \begin{pmatrix} -3 & 4 & 0 \\ -1 & 1 & 0 \\ -2 & 4 & -1 \end{pmatrix}$$

$$(e) \begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -1 \\ 2 & 3 & 3 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - CXIX

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 3 & 2 & -2 \\ 6 & 6 & -6 \\ 6 & 4 & -4 \end{pmatrix}$$

$$(b) \begin{pmatrix} 2 & 2 & 0 \\ 0 & 1 & 0 \\ -2 & -4 & 1 \end{pmatrix}$$

$$(c) \begin{pmatrix} 4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1 \end{pmatrix}$$

$$(d) \begin{pmatrix} -3 & 4 & 0 \\ -1 & 1 & 0 \\ -3 & 6 & -1 \end{pmatrix}$$

$$(e) \begin{pmatrix} -4 & -6 & -3 \\ 8 & 8 & 4 \\ 0 & 3 & 2 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - CXX

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 3 & 2 & 6 \\ -2 & 3 & -2 \\ -3 & -1 & -6 \end{pmatrix}$$

$$(b) \begin{pmatrix} -2 & 4 & 0 \\ 0 & 2 & 0 \\ -4 & 4 & 2 \end{pmatrix}$$

$$(c) \begin{pmatrix} 2 & 0 & 3 \\ 3 & -1 & 3 \\ 6 & -6 & 2 \end{pmatrix}$$

$$(d) \begin{pmatrix} -1 & -8 & 4 \\ 0 & -5 & 2 \\ 0 & -8 & 3 \end{pmatrix}$$

$$(e) \begin{pmatrix} 4 & -1 & -1 \\ 2 & -1 & -2 \\ -3 & 7 & 6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Sem-II Jan-Apr 2012

Matrix Set - CXXI

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Tutorial-I

Matrix Set - CXXII

Jan-Apr 2012

Sem-II

Quantum Mechanics-I

Tutorial-1

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 3 & 6 & 3 \\ -4 & -7 & -2 \\ -6 & -6 & 4 \end{pmatrix}$$

$$(b) \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 0 \\ -1 & -1 & 2 \end{pmatrix}$$

$$(c) \begin{pmatrix} -4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6 \end{pmatrix}$$

$$(d) \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & -6 \\ 0 & 0 & 1 \end{pmatrix}$$

$$(e) \begin{pmatrix} -1 & 1 & 2 \\ 2 & -2 & 5 \\ -2 & -1 & -6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - CXXIII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 4 & -7 & -7 \\ 4 & -7 & -7 \\ -4 & 4 & 4 \end{pmatrix} \qquad (b) \begin{pmatrix} 6 & -4 & 1 \\ 3 & -1 & 1 \\ 0 & 0 & 3 \end{pmatrix} \qquad (c) \begin{pmatrix} -3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7 \end{pmatrix}$$
$$(d) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & -6 & 1 \end{pmatrix} \qquad (e) \begin{pmatrix} 0 & 2 & 4 \\ -1 & 0 & 1 \\ -2 & -2 & -6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Tutorial-I

Sem-II

Quantum Mechanics-I

Matrix Set - CXXIV

Jan-Apr 2012

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 4 & -2 & 2 \\ -5 & 1 & -5 \\ 2 & 2 & 4 \end{pmatrix}$$

$$(b) \begin{pmatrix} 3 & -2 & -2 \\ 0 & 3 & 0 \\ 0 & -2 & 1 \end{pmatrix}$$

$$(c) \begin{pmatrix} -1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2 \end{pmatrix}$$

$$(d) \begin{pmatrix} 2 & -8 & -4 \\ 0 & -2 & -2 \\ 0 & 8 & 6 \end{pmatrix}$$

$$(e) \begin{pmatrix} -4 & -2 & 6 \\ -4 & -6 & 6 \\ -3 & -3 & 4 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Tutorial-I

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Matrix Set - CXXV

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 4 & 0 & 2 \\ -4 & 0 & -2 \\ -1 & 0 & 1 \end{pmatrix}$$

$$(b) \begin{pmatrix} 5 & 0 & 2 \\ 2 & 3 & 2 \\ -4 & 0 & -1 \end{pmatrix}$$

$$(c) \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2 \end{pmatrix}$$

$$(d) \begin{pmatrix} 2 & 1 & 2 \\ 1 & 2 & -2 \\ -1 & 1 & 5 \end{pmatrix}$$

$$(e) \begin{pmatrix} -6 & 4 & 4 \\ -2 & 0 & 2 \\ -1 & 0 & 0 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Tutorial-I

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Matrix Set - CXXVI

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 4 & 0 & 2 \\ -1 & -1 & 2 \\ -1 & 0 & 1 \end{pmatrix}$$

$$(b) \begin{pmatrix} 1 & -1 & 0 \\ 2 & 4 & 0 \\ 4 & 2 & 3 \end{pmatrix}$$

$$(c) \begin{pmatrix} 3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3 \end{pmatrix}$$

$$(d) \begin{pmatrix} 7 & -4 & -2 \\ 4 & -1 & -2 \\ 0 & 0 & 3 \end{pmatrix}$$

$$(e) \begin{pmatrix} 4 & 0 & -6 \\ 3 & -2 & -3 \\ 8 & -4 & -8 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - CXXVII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 4 & 0 & 6 \\ -6 & -7 & 4 \\ -3 & 0 & -5 \end{pmatrix}$$

$$(b) \begin{pmatrix} -3 & 4 & 4 \\ 0 & -3 & 0 \\ 0 & 2 & -1 \end{pmatrix}$$

$$(c) \begin{pmatrix} 4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1 \end{pmatrix}$$

$$(d) \begin{pmatrix} -1 & 2 & 2 \\ -1 & -4 & -1 \\ -1 & -1 & -4 \end{pmatrix}$$

$$(e) \begin{pmatrix} 2 & -1 & -3 \\ -1 & 0 & 1 \\ 4 & -2 & -5 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Sem-II Jan-Apr 2012

Matrix Set - CXXVIII

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 4 & 0 & 6 \\ -2 & 2 & -7 \\ -2 & 0 & -3 \end{pmatrix} \qquad (b) \begin{pmatrix} 0 & 0 & 3 \\ -2 & -2 & -3 \\ -2 & 0 & -5 \end{pmatrix} \qquad (c) \begin{pmatrix} 2 & 0 & 3 \\ 3 & -1 & 3 \\ 6 & -6 & 2 \end{pmatrix}$$
$$(d) \begin{pmatrix} 1 & -3 & 6 \\ -1 & -1 & -2 \\ -2 & 2 & -6 \end{pmatrix} \qquad (e) \begin{pmatrix} 0 & 1 & 0 \\ -1 & 2 & 0 \\ 2 & -3 & 1 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Tutorial-I

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Matrix Set - CXXIX

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 4 & 0 & 6 \\ 6 & 6 & -3 \\ -2 & 0 & -3 \end{pmatrix} \qquad (b) \begin{pmatrix} -7 & 5 & -5 \\ -5 & 3 & -5 \\ 5 & -5 & 3 \end{pmatrix} \qquad (c) \begin{pmatrix} -2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1 \end{pmatrix} \\ (d) \begin{pmatrix} -4 & 2 & -2 \\ 0 & -2 & 0 \\ 2 & -2 & 0 \end{pmatrix} \qquad (e) \begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -1 \\ 2 & 3 & 3 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Tutorial-I

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Matrix Set - CXXX

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 4 & 0 & 6 \\ 8 & 7 & -2 \\ -2 & 0 & -3 \end{pmatrix} \qquad (b) \begin{pmatrix} 1 & 0 & -4 \\ 2 & -3 & -2 \\ 2 & 0 & -5 \end{pmatrix} \qquad (c) \begin{pmatrix} -4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6 \end{pmatrix}$$
$$(d) \begin{pmatrix} -1 & 1 & 0 \\ -1 & -3 & 0 \\ 1 & 1 & -2 \end{pmatrix} \qquad (e) \begin{pmatrix} -4 & -6 & -3 \\ 8 & 8 & 4 \\ 0 & 3 & 2 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Tutorial-I

-

Sem-II

Quantum Mechanics-I

Tutorial-1

Matrix Set - CXXXI

Jan-Apr 2012

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 4 & 4 & 1 \\ -1 & -1 & -1 \\ -6 & -4 & -3 \end{pmatrix}$$

$$(b) \begin{pmatrix} -5 & 0 & 4 \\ -2 & -1 & 2 \\ -2 & 0 & 1 \end{pmatrix}$$

$$(c) \begin{pmatrix} -3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7 \end{pmatrix}$$

$$(d) \begin{pmatrix} -1 & 2 & -2 \\ 0 & -2 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$

$$(e) \begin{pmatrix} 4 & -1 & -1 \\ 2 & -1 & -2 \\ -3 & 7 & 6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - CXXXII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 4 & 5 & -3 \\ -1 & -2 & 3 \\ -1 & -1 & 2 \end{pmatrix}$$

$$(b) \begin{pmatrix} -6 & -2 & 4 \\ 6 & 1 & -6 \\ -2 & -1 & 0 \end{pmatrix}$$

$$(c) \begin{pmatrix} -1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2 \end{pmatrix}$$

$$(d) \begin{pmatrix} -3 & 4 & 0 \\ -1 & 1 & 0 \\ -2 & 4 & -1 \end{pmatrix}$$

$$(e) \begin{pmatrix} 2 & 2 & 1 \\ 3 & 0 & -3 \\ -4 & 5 & 7 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

-

Matrix Set - CXXXIII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 5 & -8 & 2 \\ -1 & 0 & -2 \\ -2 & 4 & 0 \end{pmatrix}$$

$$(b) \begin{pmatrix} -4 & 6 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$(c) \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2 \end{pmatrix}$$

$$(d) \begin{pmatrix} -3 & 4 & 0 \\ -1 & 1 & 0 \\ -3 & 6 & -1 \end{pmatrix}$$

$$(e) \begin{pmatrix} -1 & 1 & 2 \\ 2 & -2 & 5 \\ -2 & -1 & -6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

-

Matrix Set - CXXXIV

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 5 & -7 & -7 \\ 4 & -6 & -7 \\ -4 & 4 & 5 \end{pmatrix} \qquad (b) \begin{pmatrix} 7 & -8 & -4 \\ 0 & -1 & 0 \\ 8 & -8 & -5 \end{pmatrix} \qquad (c) \begin{pmatrix} 3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3 \end{pmatrix}$$
$$(d) \begin{pmatrix} -1 & -8 & 4 \\ 0 & -5 & 2 \\ 0 & -8 & 3 \end{pmatrix} \qquad (e) \begin{pmatrix} 0 & 2 & 4 \\ -1 & 0 & 1 \\ -2 & -2 & -6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - CXXXV

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 5 & -6 & -6 \\ 3 & -4 & -6 \\ -3 & 3 & 5 \end{pmatrix}$$

$$(b) \begin{pmatrix} -2 & 1 & -3 \\ 1 & -2 & 3 \\ 1 & -1 & 2 \end{pmatrix}$$

$$(c) \begin{pmatrix} 4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1 \end{pmatrix}$$

$$(d) \begin{pmatrix} 3 & -4 & 0 \\ 1 & -1 & 0 \\ 2 & -4 & 1 \end{pmatrix}$$

$$(e) \begin{pmatrix} -4 & -2 & 6 \\ -4 & -6 & 6 \\ -3 & -3 & 4 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Sem-II Jan-Apr 2012

Matrix Set - CXXXVI

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$\begin{array}{l} (a) \begin{pmatrix} 5 & -3 & 3 \\ -1 & 3 & -3 \\ -3 & 3 & -3 \end{pmatrix} \\ (b) \begin{pmatrix} -1 & -2 & 6 \\ 0 & -3 & 6 \\ 0 & -1 & 2 \end{pmatrix} \\ (c) \begin{pmatrix} 2 & 0 & 3 \\ 3 & -1 & 3 \\ 6 & -6 & 2 \end{pmatrix} \\ (d) \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & -6 \\ 0 & 0 & 1 \end{pmatrix} \\ (e) \begin{pmatrix} -6 & 4 & 4 \\ -2 & 0 & 2 \\ -1 & 0 & 0 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

-Matrix Set - CXXXVII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 5 & 0 & -6 \\ -1 & 1 & 1 \\ 1 & -2 & -2 \end{pmatrix}$$

$$(b) \begin{pmatrix} -1 & 2 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$(c) \begin{pmatrix} -2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1 \end{pmatrix}$$

$$(d) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & -6 & 1 \end{pmatrix}$$

$$(e) \begin{pmatrix} 4 & 0 & -6 \\ 3 & -2 & -3 \\ 8 & -4 & -8 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - CXXXVIII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 5 & 0 & 4 \\ -2 & 0 & -1 \\ -2 & 0 & -1 \end{pmatrix} \qquad (b) \begin{pmatrix} -3 & -8 & 8 \\ 0 & 1 & -4 \\ 0 & 0 & -3 \end{pmatrix} \qquad (c) \begin{pmatrix} -4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6 \end{pmatrix}$$
$$(d) \begin{pmatrix} 2 & -8 & -4 \\ 0 & -2 & -2 \\ 0 & 8 & 6 \end{pmatrix} \qquad (e) \begin{pmatrix} 2 & -1 & -3 \\ -1 & 0 & 1 \\ 4 & -2 & -5 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Sem-II Jan-Apr 2012

Matrix Set - CXXXIX

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 5 & 0 & 6 \\ -6 & -7 & 6 \\ -3 & 0 & -4 \end{pmatrix}$$

$$(b) \begin{pmatrix} 1 & -6 & -3 \\ 0 & -1 & -1 \\ 0 & 2 & 2 \end{pmatrix}$$

$$(c) \begin{pmatrix} -3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7 \end{pmatrix}$$

$$(d) \begin{pmatrix} 2 & 1 & 2 \\ 1 & 2 & -2 \\ -1 & 1 & 5 \end{pmatrix}$$

$$(e) \begin{pmatrix} 0 & 1 & 0 \\ -1 & 2 & 0 \\ 2 & -3 & 1 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - CXL

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 5 & 0 & 6 \\ -3 & -3 & -1 \\ -3 & 0 & -4 \end{pmatrix}$$

$$(b) \begin{pmatrix} 2 & 2 & 0 \\ 0 & 1 & 0 \\ -2 & -4 & 1 \end{pmatrix}$$

$$(c) \begin{pmatrix} -1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2 \end{pmatrix}$$

$$(d) \begin{pmatrix} 7 & -4 & -2 \\ 4 & -1 & -2 \\ 0 & 0 & 3 \end{pmatrix}$$

$$(e) \begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -1 \\ 2 & 3 & 3 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - CXLI

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 5 & 1 & 2 \\ -2 & 2 & -2 \\ -5 & -1 & -2 \end{pmatrix}$$

$$(b) \begin{pmatrix} -2 & 4 & 0 \\ 0 & 2 & 0 \\ -4 & 4 & 2 \end{pmatrix}$$

$$(c) \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2 \end{pmatrix}$$

$$(d) \begin{pmatrix} -1 & 2 & 2 \\ -1 & -4 & -1 \\ -1 & -1 & -4 \end{pmatrix}$$

$$(e) \begin{pmatrix} -4 & -6 & -3 \\ 8 & 8 & 4 \\ 0 & 3 & 2 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - CXLII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 5 & 2 & -6 \\ -4 & -2 & 4 \\ 2 & 2 & 0 \end{pmatrix}$$

$$(b) \begin{pmatrix} 2 & 0 & 0 \\ 8 & -2 & -4 \\ -4 & 2 & 4 \end{pmatrix}$$

$$(c) \begin{pmatrix} 3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3 \end{pmatrix}$$

$$(d) \begin{pmatrix} 1 & -3 & 6 \\ -1 & -1 & -2 \\ -2 & 2 & -6 \end{pmatrix}$$

$$(e) \begin{pmatrix} 4 & -1 & -1 \\ 2 & -1 & -2 \\ -3 & 7 & 6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - CXLIII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 5 & 2 & 0 \\ -7 & -1 & 3 \\ 5 & 2 & 0 \end{pmatrix}$$

$$(b) \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 0 \\ -1 & -1 & 2 \end{pmatrix}$$

$$(c) \begin{pmatrix} 4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1 \end{pmatrix}$$

$$(d) \begin{pmatrix} -4 & 2 & -2 \\ 0 & -2 & 0 \\ 2 & -2 & 0 \end{pmatrix}$$

$$(e) \begin{pmatrix} 2 & 2 & 1 \\ 3 & 0 & -3 \\ -4 & 5 & 7 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

-

Matrix Set - CXLIV

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 5 & 2 & 2 \\ -2 & 1 & 1 \\ -2 & -2 & -2 \end{pmatrix} \qquad (b) \begin{pmatrix} 6 & -4 & 1 \\ 3 & -1 & 1 \\ 0 & 0 & 3 \end{pmatrix} \qquad (c) \begin{pmatrix} 2 & 0 & 3 \\ 3 & -1 & 3 \\ 6 & -6 & 2 \end{pmatrix}$$
$$(d) \begin{pmatrix} -1 & 1 & 0 \\ -1 & -3 & 0 \\ 1 & 1 & -2 \end{pmatrix} \qquad (e) \begin{pmatrix} -1 & 1 & 2 \\ 2 & -2 & 5 \\ -2 & -1 & -6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - CXLV

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 6 & -7 & -1 \\ 4 & -4 & -2 \\ 2 & -3 & 1 \end{pmatrix} \qquad (b) \begin{pmatrix} 3 & -2 & -2 \\ 0 & 3 & 0 \\ 0 & -2 & 1 \end{pmatrix} \qquad (c) \begin{pmatrix} -2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1 \end{pmatrix}$$
$$(d) \begin{pmatrix} -1 & 2 & -2 \\ 0 & -2 & 1 \\ 0 & -1 & 0 \end{pmatrix} \qquad (e) \begin{pmatrix} 0 & 2 & 4 \\ -1 & 0 & 1 \\ -2 & -2 & -6 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - CXLVI

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 6 & 0 & -6 \\ 7 & -1 & -6 \\ 4 & 0 & -4 \end{pmatrix}$$

$$(b) \begin{pmatrix} 5 & 0 & 2 \\ 2 & 3 & 2 \\ -4 & 0 & -1 \end{pmatrix}$$

$$(c) \begin{pmatrix} -4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6 \end{pmatrix}$$

$$(d) \begin{pmatrix} -3 & 4 & 0 \\ -1 & 1 & 0 \\ -2 & 4 & -1 \end{pmatrix}$$

$$(e) \begin{pmatrix} -4 & -2 & 6 \\ -4 & -6 & 6 \\ -3 & -3 & 4 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - CXLVII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 6 & 0 & 1 \\ -3 & 1 & -3 \\ -6 & 0 & 1 \end{pmatrix} \qquad (b) \begin{pmatrix} 1 & -1 & 0 \\ 2 & 4 & 0 \\ 4 & 2 & 3 \end{pmatrix} \qquad (c) \begin{pmatrix} -3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7 \end{pmatrix}$$
$$(d) \begin{pmatrix} -3 & 4 & 0 \\ -1 & 1 & 0 \\ -3 & 6 & -1 \end{pmatrix} \qquad (e) \begin{pmatrix} -6 & 4 & 4 \\ -2 & 0 & 2 \\ -1 & 0 & 0 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

Matrix Set - CXLVIII

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 6 & 6 & 0 \\ -2 & -2 & -2 \\ 1 & 1 & 1 \end{pmatrix}$$

$$(b) \begin{pmatrix} -3 & 4 & 4 \\ 0 & -3 & 0 \\ 0 & 2 & -1 \end{pmatrix}$$

$$(c) \begin{pmatrix} -1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2 \end{pmatrix}$$

$$(d) \begin{pmatrix} -1 & -8 & 4 \\ 0 & -5 & 2 \\ 0 & -8 & 3 \end{pmatrix}$$

$$(e) \begin{pmatrix} 4 & 0 & -6 \\ 3 & -2 & -3 \\ 8 & -4 & -8 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Quantum Mechanics-I

Tutorial-I

-

Matrix Set - CXLIX

Jan-Apr 2012

Sem-II

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 7 & -7 & -7 \\ 6 & -6 & -7 \\ -6 & 6 & 7 \end{pmatrix}$$

$$(b) \begin{pmatrix} 0 & 0 & 3 \\ -2 & -2 & -3 \\ -2 & 0 & -5 \end{pmatrix}$$

$$(c) \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2 \end{pmatrix}$$

$$(d) \begin{pmatrix} 3 & -4 & 0 \\ 1 & -1 & 0 \\ 2 & -4 & 1 \end{pmatrix}$$

$$(e) \begin{pmatrix} 2 & -1 & -3 \\ -1 & 0 & 1 \\ 4 & -2 & -5 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

M.Sc.Physics (2011-12)

Sem-II Jan-Apr 2012

Quantum Mechanics-I

Tutorial-I

Matrix Set - CL

EIGENVALUES AND EIGENVECTORS

- [1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.
 - The first matirix has three distinct eigenvalues.
 - The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
 - the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
 - All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
 - All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.

$$(a) \begin{pmatrix} 7 & -6 & 6 \\ -1 & 2 & -4 \\ -5 & 5 & -7 \end{pmatrix}$$

$$(b) \begin{pmatrix} -7 & 5 & -5 \\ -5 & 3 & -5 \\ 5 & -5 & 3 \end{pmatrix}$$

$$(c) \begin{pmatrix} 3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3 \end{pmatrix}$$

$$(d) \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & -6 \\ 0 & 0 & 1 \end{pmatrix}$$

$$(e) \begin{pmatrix} 0 & 1 & 0 \\ -1 & 2 & 0 \\ 2 & -3 & 1 \end{pmatrix}$$

- [2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eignevalue 1.
- [3] Which of the above five matrices can be diagonlized? Give reasons to support your answer.

[1] Answers for Set No: I

(a) The eigenvalues are $\{-2, 1, 0\}$ and the eigenvector(s) are

$$\{-2, \{3, -2, 1\}\}$$
 $\{1, \{1, -1, 1\}\}$ $\{0, \{-1, 1, 0\}\}$

(b) The eigenvalues are $\{-3, -3, -1\}$ and the eigenvector(s) are

$$\{-3, \{0, -1, 1\}\} \quad \{-3, \{1, 0, 0\}\} \quad \{-1, \{2, 0, 1\}\}$$

(c) The eigenvalues are $\{-2, -2, 1\}$ and the eigenvector(s) are

$$\{-2,\{-3,1,2\}\} \quad \{1,\{-1,1,1\}\}$$

(d) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$\{-3, \{-1, 0, 1\}\}$$
 $\{-3, \{-1, 1, 0\}\}$

(e) The eigenvalues are $\{-3, -3, -3\}$ and the eigenvector(s) are

$$\{-3, \{-1, 2, 0\}\}$$

Click Here to Go Back To Questions

[2] Answers for Set No: II

(a) The eigenvalues are $\{6, 1, 0\}$ and the eigenvector(s) are

 $\{6, \{1, -1, 1\}\} \quad \{1, \{-1, 2, 1\}\} \quad \{0, \{-1, 1, 0\}\}$

(b) The eigenvalues are $\{-3, -2, -2\}$ and the eigenvector(s) are

$$\{-3, \{-1, 1, 1\}\} \quad \{-2, \{-3, 0, 2\}\} \quad \{-2, \{0, 1, 0\}\}$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$\{3, \{-1, 0, 1\}\}$$
 $\{-2, \{-3, -1, 2\}\}$

(d) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{-2, 0, 1\}\}$$
 $\{-2, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2, \{-1, -1, 1\}\}$

[3] Answers for Set No: III

(a) The eigenvalues are $\{3, 2, 1\}$ and the eigenvector(s) are

$$\{3, \{-3, 2, 2\}\}$$
 $\{2, \{-1, 0, 1\}\}$ $\{1, \{-3, 1, 2\}\}$

(b) The eigenvalues are $\{3, -2, -2\}$ and the eigenvector(s) are

$$\{3,\{-1,-1,1\}\} \quad \{-2,\{-1,0,1\}\} \quad \{-2,\{1,1,0\}\}$$

(c) The eigenvalues are $\{-1, 1, 1\}$ and the eigenvector(s) are

$$\{-1, \{2, 1, 2\}\} \quad \{1, \{1, 1, 2\}\}$$

(d) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{-1, 0, 1\}\}$$
 $\{-2, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{-1, 1, 0\}\}$$

Click Here to Go Back To Questions

[4] Answers for Set No: IV

(a) The eigenvalues are $\{-5,-3,0\}$ and the eigenvector(s) are

 $\{-5, \{-5, -3, 4\}\} \quad \{-3, \{-2, -1, 2\}\} \quad \{0, \{-1, 0, 1\}\}$

(b) The eigenvalues are $\{-3, -3, -1\}$ and the eigenvector(s) are

$$\{-3,\{1,0,1\}\} \quad \{-3,\{0,1,0\}\} \quad \{-1,\{2,1,1\}\}$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$\{-1, \{1, 0, 0\}\}$$
 $\{0, \{2, 2, 1\}\}$

(d) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{0, 0, 1\}\}$$
 $\{-2, \{-1, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2, \{2, 1, 1\}\}$

[5] Answers for Set No: V

(a) The eigenvalues are $\{4, -1, 0\}$ and the eigenvector(s) are

$$\{4, \{1, -1, 1\}\} \quad \{-1, \{-1, 1, 0\}\} \quad \{0, \{-1, 2, 1\}\}$$

(b) The eigenvalues are $\{-3, -1, -1\}$ and the eigenvector(s) are

$$\{-3, \{2, 1, 1\}\} \quad \{-1, \{1, 0, 1\}\} \quad \{-1, \{0, 1, 0\}\}$$

(c) The eigenvalues are $\{2, 1, 1\}$ and the eigenvector(s) are

$$\{2, \{-1, 1, 0\}\}$$
 $\{1, \{1, 0, 1\}\}$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 1, 1\}\}$$
 $\{-1, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2,\{2,1,2\}\}$

Click Here to Go Back To Questions

[6] Answers for Set No: VI

(a) The eigenvalues are $\{-4,1,0\}$ and the eigenvector(s) are

$$\{-4, \{-1, 1, 0\}\} \quad \{1, \{-1, 1, 1\}\} \quad \{0, \{-2, 3, 1\}\}$$

(b) The eigenvalues are $\{-2, -2, -1\}$ and the eigenvector(s) are

$$\{-2,\{1,0,1\}\} \quad \{-2,\{-1,2,0\}\} \quad \{-1,\{2,-3,1\}\}$$

(c) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3, \{-1, -1, 1\}\}$$
 $\{2, \{1, 1, 0\}\}$

(d) The eigenvalues are $\{-1, -1, -1\}$ and the eigenvector(s) are

$$\{-1, \{0, 0, 1\}\}$$
 $\{-1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

 $\{-1, \{1, 0, 1\}\}$

[7] Answers for Set No: VII

(a) The eigenvalues are $\{7, 2, 1\}$ and the eigenvector(s) are

$$\{7, \{1, -1, 1\}\} \quad \{2, \{-1, 1, 0\}\} \quad \{1, \{3, -2, 1\}\}$$

(b) The eigenvalues are $\{-2, -1, -1\}$ and the eigenvector(s) are

$$\{-2, \{3, 1, 0\}\} \quad \{-1, \{0, 0, 1\}\} \quad \{-1, \{2, 1, 0\}\}$$

(c) The eigenvalues are $\{3, 2, 2\}$ and the eigenvector(s) are

$$\{3, \{1, 0, 1\}\}$$
 $\{2, \{1, -1, 3\}\}$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 0, 1\}\}$$
 $\{-1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

 $\{1,\{0,0,1\}\}$

Click Here to Go Back To Questions

[8] Answers for Set No: VIII

(a) The eigenvalues are $\{3, -1, 0\}$ and the eigenvector(s) are

 $\{3,\{1,-1,1\}\} \quad \{-1,\{3,-2,1\}\} \quad \{0,\{-1,1,0\}\}$

(b) The eigenvalues are $\{3,-1,-1\}$ and the eigenvector(s) are

$$\{3,\{1,0,1\}\} \quad \{-1,\{1,0,2\}\} \quad \{-1,\{1,1,0\}\}$$

(c) The eigenvalues are $\{2, 2, -1\}$ and the eigenvector(s) are

$$\{2, \{1, 1, 0\}\}$$
 $\{-1, \{-2, -1, 2\}\}$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 1, 2\}\}$$
 $\{-1, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

 $\{2, \{-1, 0, 2\}\}$

[9] Answers for Set No: IX

(a) The eigenvalues are $\{3, -1, 0\}$ and the eigenvector(s) are

$$\{3, \{1, -1, 1\}\}$$
 $\{-1, \{-1, 1, 0\}\}$ $\{0, \{-1, 2, 1\}\}$

(b) The eigenvalues are $\{-1, -1, 0\}$ and the eigenvector(s) are

$$\{-1, \{-3, 0, 1\}\} \quad \{-1, \{1, 1, 0\}\} \quad \{0, \{-1, 1, 1\}\}$$

(c) The eigenvalues are $\{-2, -2, 1\}$ and the eigenvector(s) are

$$\{-2, \{-3, 1, 2\}\} \quad \{1, \{-1, 1, 1\}\}$$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{0, 0, 1\}\}$$
 $\{1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

$$\{2, \{-1, 0, 2\}\}$$

Click Here to Go Back To Questions

[10] Answers for Set No: X

(a) The eigenvalues are $\{-4,-3,0\}$ and the eigenvector(s) are

$$\{-4, \{-1, 0, 1\}\}$$
 $\{-3, \{-2, 1, 3\}\}$ $\{0, \{0, 1, 0\}\}$

(b) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$\{-1, \{0, 3, 1\}\} \quad \{-1, \{1, 0, 0\}\} \quad \{0, \{2, 2, 1\}\}$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$\{3, \{-1, 0, 1\}\}$$
 $\{-2, \{-3, -1, 2\}\}$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{2, 0, 1\}\}$$
 $\{1, \{0, 1, 0\}\}$

(e) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

 $\{3, \{1, 0, 1\}\}$

[11] Answers for Set No: XI

(a) The eigenvalues are $\{2, -1, 0\}$ and the eigenvector(s) are

$$\{2, \{-2, -2, 1\}\} \quad \{-1, \{1, 1, 0\}\} \quad \{0, \{-7, -6, 2\}\}$$

(b) The eigenvalues are $\{1, 1, 0\}$ and the eigenvector(s) are

$$\{1, \{0, 0, 1\}\} \quad \{1, \{1, 1, 0\}\} \quad \{0, \{2, 1, 0\}\}$$

(c) The eigenvalues are $\{-1, 1, 1\}$ and the eigenvector(s) are

$$\{-1, \{2, 1, 2\}\} \quad \{1, \{1, 1, 2\}\}$$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{0, 0, 1\}\}$$
 $\{1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

 $\{3,\{1,0,1\}\}$

Click Here to Go Back To Questions

[12] Answers for Set No: XII

(a) The eigenvalues are $\{5, 1, 0\}$ and the eigenvector(s) are

 $\{5,\{-2,-2,1\}\} \quad \{1,\{-2,-1,1\}\} \quad \{0,\{-1,0,1\}\}$

(b) The eigenvalues are $\{-3,-3,1\}$ and the eigenvector(s) are

$$\{-3, \{0, 1, 1\}\} \quad \{-3, \{1, 0, 0\}\} \quad \{1, \{-2, 1, 0\}\}$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$\{-1, \{1, 0, 0\}\}$$
 $\{0, \{2, 2, 1\}\}$

(d) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

$$\{2, \{0, -1, 2\}\}$$
 $\{2, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

 $\{-3, \{-1, 2, 0\}\}$

[13] Answers for Set No: XIII

(a) The eigenvalues are $\{4, -3, 2\}$ and the eigenvector(s) are

$$\{4, \{-1, 1, 0\}\} \quad \{-3, \{1, 0, 1\}\} \quad \{2, \{-1, 1, 1\}\}$$

(b) The eigenvalues are $\{1, 1, 0\}$ and the eigenvector(s) are

$$\{1, \{0, -1, 2\}\} \quad \{1, \{1, 0, 0\}\} \quad \{0, \{-3, -1, 1\}\}$$

(c) The eigenvalues are $\{2, 1, 1\}$ and the eigenvector(s) are

$$\{2, \{-1, 1, 0\}\}$$
 $\{1, \{1, 0, 1\}\}$

(d) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

$$\{3, \{2, 0, 1\}\}$$
 $\{3, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{-1, -1, 1\}\}$$

Click Here to Go Back To Questions

[14] Answers for Set No: XIV

(a) The eigenvalues are $\{3,2,0\}$ and the eigenvector(s) are

$$\{3,\{1,-1,1\}\} \quad \{2,\{-1,1,0\}\} \quad \{0,\{3,-2,1\}\}$$

(b) The eigenvalues are $\{2, 1, 1\}$ and the eigenvector(s) are

$$\{2, \{-1, 0, 2\}\} \quad \{1, \{0, 0, 1\}\} \quad \{1, \{-2, 1, 0\}\}$$

(c) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3, \{-1, -1, 1\}\}$$
 $\{2, \{1, 1, 0\}\}$

(d) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

$$\{3, \{1, 0, 2\}\}$$
 $\{3, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2, \{-1, 1, 0\}\}$

[15] Answers for Set No: XV

(a) The eigenvalues are $\{-5,-3,1\}$ and the eigenvector(s) are

$$\{-5, \{-1, 0, 1\}\} \quad \{-3, \{-3, 1, 3\}\} \quad \{1, \{-1, 1, 2\}\}$$

(b) The eigenvalues are $\{-2,2,2\}$ and the eigenvector(s) are

$$\{-2, \{1, 0, 1\}\} \quad \{2, \{0, 0, 1\}\} \quad \{2, \{1, 1, 0\}\}$$

(c) The eigenvalues are $\{3, 2, 2\}$ and the eigenvector(s) are

$$\{3, \{1, 0, 1\}\}$$
 $\{2, \{1, -1, 3\}\}$

(d) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$\{-3, \{-1, 0, 1\}\}$$
 $\{-3, \{-1, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2,\{2,1,1\}\}$

Click Here to Go Back To Questions

[16] Answers for Set No: XVI

(a) The eigenvalues are $\{-2,-1,0\}$ and the eigenvector(s) are

$$\{-2, \{-1, 1, 0\}\} \quad \{-1, \{3, -2, 2\}\} \quad \{0, \{3, -2, 3\}\}$$

(b) The eigenvalues are $\{2, 2, 0\}$ and the eigenvector(s) are

$$\{2, \{1, 0, 2\}\} \quad \{2, \{1, 2, 0\}\} \quad \{0, \{0, -2, 1\}\}$$

(c) The eigenvalues are $\{2,2,-1\}$ and the eigenvector(s) are

$$\{2, \{1, 1, 0\}\}$$
 $\{-1, \{-2, -1, 2\}\}$

(d) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{-2, 0, 1\}\}$$
 $\{-2, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2, \{2, 1, 2\}\}$

[17] Answers for Set No: XVII

(a) The eigenvalues are $\{-3, -2, 1\}$ and the eigenvector(s) are

$$\{-3, \{-1, 0, 1\}\} \quad \{-2, \{-2, 1, 3\}\} \quad \{1, \{0, 1, 0\}\}$$

(b) The eigenvalues are $\{2, 2, 1\}$ and the eigenvector(s) are

$$\{2, \{0, 0, 1\}\} \quad \{2, \{-1, 1, 0\}\} \quad \{1, \{1, 0, 1\}\}$$

(c) The eigenvalues are $\{-2,-2,1\}$ and the eigenvector (s) are

$$\{-2, \{-3, 1, 2\}\}$$
 $\{1, \{-1, 1, 1\}\}$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$\{-2, \{-1, 0, 1\}\}$$
 $\{-2, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{-1, -1, -1\}$ and the eigenvector(s) are

 $\{-1,\{1,0,1\}\}$

Click Here to Go Back To Questions

[18] Answers for Set No: XVIII

(a) The eigenvalues are $\{5, 1, 0\}$ and the eigenvector(s) are

 $\{5,\{1,1,1\}\} \quad \{1,\{0,-1,1\}\} \quad \{0,\{1,-1,2\}\}$

(b) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3, \{-1, 0, 3\}\}$$
 $\{3, \{4, 3, 0\}\}$ $\{2, \{1, 1, 0\}\}$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$\{3, \{-1, 0, 1\}\}$$
 $\{-2, \{-3, -1, 2\}\}$

(d) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{0, 0, 1\}\}$$
 $\{-2, \{-1, 1, 0\}\}$

(e) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

 $\{1, \{0, 0, 1\}\}$

[19] Answers for Set No: XIX

(a) The eigenvalues are $\{3,-1,0\}$ and the eigenvector(s) are

$$\{3, \{-2, -2, 1\}\} \quad \{-1, \{-1, 0, 1\}\} \quad \{0, \{-2, -1, 1\}\}$$

(b) The eigenvalues are $\{3, 3, 1\}$ and the eigenvector(s) are

$$\{3, \{0, -1, 1\}\} \quad \{3, \{1, 0, 0\}\} \quad \{1, \{1, 0, 1\}\}\$$

(c) The eigenvalues are $\{-1, 1, 1\}$ and the eigenvector(s) are

$$\{-1, \{2, 1, 2\}\} \quad \{1, \{1, 1, 2\}\}$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 1, 1\}\}$$
 $\{-1, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

$$\{2, \{-1, 0, 2\}\}$$

Click Here to Go Back To Questions

[20] Answers for Set No: XX

(a) The eigenvalues are $\{5, 2, 1\}$ and the eigenvector(s) are

$$\{5, \{1, -1, 1\}\} \quad \{2, \{-1, 1, 0\}\} \quad \{1, \{3, -2, 1\}\}$$

(b) The eigenvalues are $\{3, 3, 1\}$ and the eigenvector(s) are

$$\{3, \{-1, 0, 1\}\} \quad \{3, \{0, 1, 0\}\} \quad \{1, \{-1, -1, 2\}\}$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$\{-1, \{1, 0, 0\}\}$$
 $\{0, \{2, 2, 1\}\}$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 0, 1\}\}$$
 $\{-1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

 $\{2, \{-1, 0, 2\}\}$

[21] Answers for Set No: XXI

(a) The eigenvalues are $\{3, -2, 1\}$ and the eigenvector(s) are

$$\{3, \{-1, 2, 1\}\}$$
 $\{-2, \{-1, 1, 1\}\}$ $\{1, \{-1, 1, 0\}\}$

(b) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3, \{0, 0, 1\}\} \quad \{3, \{-1, 2, 0\}\} \quad \{2, \{-1, 1, 2\}\}$$

(c) The eigenvalues are $\{2, 1, 1\}$ and the eigenvector(s) are

$$\{2, \{-1, 1, 0\}\}$$
 $\{1, \{1, 0, 1\}\}$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 0, 1\}\}$$
 $\{-1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

 $\{3,\{1,0,1\}\}$

Click Here to Go Back To Questions

[22] Answers for Set No: XXII

(a) The eigenvalues are $\{3, 2, 0\}$ and the eigenvector(s) are

 $\{3, \{-2, 3, 1\}\}$ $\{2, \{-1, 1, 1\}\}$ $\{0, \{-1, 1, 0\}\}$

(b) The eigenvalues are $\{-3, -3, -1\}$ and the eigenvector(s) are

$$\{-3, \{0, -1, 1\}\} \quad \{-3, \{1, 0, 0\}\} \quad \{-1, \{2, 0, 1\}\}$$

(c) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3, \{-1, -1, 1\}\}$$
 $\{2, \{1, 1, 0\}\}$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 1, 2\}\}$$
 $\{-1, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

 $\{3, \{1, 0, 1\}\}$

[23] Answers for Set No: XXIII

(a) The eigenvalues are $\{-3,-1,0\}$ and the eigenvector(s) are

$$\{-3, \{1, 0, 1\}\} \quad \{-1, \{5, -3, 3\}\} \quad \{0, \{-1, 1, 0\}\}$$

(b) The eigenvalues are $\{-3, -2, -2\}$ and the eigenvector(s) are

$$\{-3, \{-1, 1, 1\}\} \quad \{-2, \{-3, 0, 2\}\} \quad \{-2, \{0, 1, 0\}\}$$

(c) The eigenvalues are $\{3, 2, 2\}$ and the eigenvector(s) are

$$\{3, \{1, 0, 1\}\}$$
 $\{2, \{1, -1, 3\}\}$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{0, 0, 1\}\}$$
 $\{1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{-3, -3, -3\}$ and the eigenvector(s) are

$$\{-3, \{-1, 2, 0\}\}$$

Click Here to Go Back To Questions

[24] Answers for Set No: XXIV

(a) The eigenvalues are $\{-5,-1,0\}$ and the eigenvector(s) are

 $\{-5,\{-1,1,1\}\} \quad \{-1,\{-1,2,1\}\} \quad \{0,\{-1,1,0\}\}$

(b) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$\{3,\{-1,-1,1\}\} \quad \{-2,\{-1,0,1\}\} \quad \{-2,\{1,1,0\}\}$$

(c) The eigenvalues are $\{2, 2, -1\}$ and the eigenvector(s) are

$$\{2, \{1, 1, 0\}\}$$
 $\{-1, \{-2, -1, 2\}\}$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{2, 0, 1\}\}$$
 $\{1, \{0, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2, \{-1, -1, 1\}\}$

[25] Answers for Set No: XXV

(a) The eigenvalues are $\{-3, 1, 0\}$ and the eigenvector(s) are

$$\{-3, \{-1, 0, 1\}\} \quad \{1, \{-1, 1, 2\}\} \quad \{0, \{-3, 2, 6\}\}$$

(b) The eigenvalues are $\{-3, -3, -1\}$ and the eigenvector(s) are

$$\{-3, \{1, 0, 1\}\} \quad \{-3, \{0, 1, 0\}\} \quad \{-1, \{2, 1, 1\}\}$$

(c) The eigenvalues are $\{-2, -2, 1\}$ and the eigenvector(s) are

$$\{-2, \{-3, 1, 2\}\}$$
 $\{1, \{-1, 1, 1\}\}$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{0, 0, 1\}\}$$
 $\{1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{-1, 1, 0\}\}$$

Click Here to Go Back To Questions

[26] Answers for Set No: XXVI

(a) The eigenvalues are $\{-2, 1, 0\}$ and the eigenvector(s) are

$$\{-2, \{-1, 1, 0\}\} \quad \{1, \{-1, 0, 1\}\} \quad \{0, \{-2, -1, 2\}\}$$

(b) The eigenvalues are $\{-3, -1, -1\}$ and the eigenvector(s) are

$$\{-3,\{2,1,1\}\} \quad \{-1,\{1,0,1\}\} \quad \{-1,\{0,1,0\}\}$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$\{3, \{-1, 0, 1\}\}$$
 $\{-2, \{-3, -1, 2\}\}$

(d) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

$$\{2, \{0, -1, 2\}\}$$
 $\{2, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2, \{2, 1, 1\}\}$

[27] Answers for Set No: XXVII

(a) The eigenvalues are $\{-3, -1, 0\}$ and the eigenvector(s) are

$$\{-3, \{-1, 1, 0\}\} \quad \{-1, \{-2, 3, 1\}\} \quad \{0, \{-1, 1, 1\}\}$$

(b) The eigenvalues are $\{-2, -2, -1\}$ and the eigenvector(s) are

$$\{-2, \{1, 0, 1\}\} \quad \{-2, \{-1, 2, 0\}\} \quad \{-1, \{2, -3, 1\}\}$$

(c) The eigenvalues are $\{-1, 1, 1\}$ and the eigenvector(s) are

$$\{-1, \{2, 1, 2\}\} \quad \{1, \{1, 1, 2\}\}$$

(d) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

$$\{3, \{2, 0, 1\}\}$$
 $\{3, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2,\{2,1,2\}\}$

Click Here to Go Back To Questions

[28] Answers for Set No: XXVIII

(a) The eigenvalues are $\{-3, -1, 0\}$ and the eigenvector(s) are

 $\{-3,\{1,1,1\}\} \quad \{-1,\{1,1,2\}\} \quad \{0,\{1,2,3\}\}$

(b) The eigenvalues are $\{-2, -1, -1\}$ and the eigenvector(s) are

$$\{-2, \{3, 1, 0\}\} \quad \{-1, \{0, 0, 1\}\} \quad \{-1, \{2, 1, 0\}\}$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$\{-1, \{1, 0, 0\}\}$$
 $\{0, \{2, 2, 1\}\}$

(d) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

$$\{3, \{1, 0, 2\}\}$$
 $\{3, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

 $\{-1, \{1, 0, 1\}\}$

[29] Answers for Set No: XXIX

(a) The eigenvalues are $\{-2,-1,0\}$ and the eigenvector(s) are

$$\{-2, \{-3, 3, 1\}\}$$
 $\{-1, \{-2, 2, 1\}\}$ $\{0, \{0, 1, 0\}\}$

(b) The eigenvalues are $\{3, -1, -1\}$ and the eigenvector(s) are

$$\{3,\{1,0,1\}\} \quad \{-1,\{1,0,2\}\} \quad \{-1,\{1,1,0\}\}$$

(c) The eigenvalues are $\{2, 1, 1\}$ and the eigenvector(s) are

$$\{2, \{-1, 1, 0\}\}$$
 $\{1, \{1, 0, 1\}\}$

(d) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$\{-3, \{-1, 0, 1\}\} \{-3, \{-1, 1, 0\}\}$$

(e) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

 $\{1,\{0,0,1\}\}$

Click Here to Go Back To Questions

[30] Answers for Set No: XXX

(a) The eigenvalues are $\{-4,-2,0\}$ and the eigenvector(s) are

$$\{-4, \{-1, -1, 1\}\} \quad \{-2, \{1, 1, 0\}\} \quad \{0, \{0, -1, 1\}\}$$

(b) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$\{-1, \{-3, 0, 1\}\} \quad \{-1, \{1, 1, 0\}\} \quad \{0, \{-1, 1, 1\}\}$$

(c) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3, \{-1, -1, 1\}\}$$
 $\{2, \{1, 1, 0\}\}$

(d) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{-2, 0, 1\}\}$$
 $\{-2, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

 $\{2, \{-1, 0, 2\}\}$

[31] Answers for Set No: XXXI

(a) The eigenvalues are $\{-4, 3, 0\}$ and the eigenvector(s) are

$$\{-4, \{-1, -1, 1\}\}$$
 $\{3, \{0, -1, 1\}\}$ $\{0, \{1, 1, 0\}\}$

(b) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$\{-1, \{0, 3, 1\}\} \quad \{-1, \{1, 0, 0\}\} \quad \{0, \{2, 2, 1\}\}$$

(c) The eigenvalues are $\{3, 2, 2\}$ and the eigenvector(s) are

$$\{3, \{1, 0, 1\}\}$$
 $\{2, \{1, -1, 3\}\}$

(d) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{-1, 0, 1\}\}$$
 $\{-2, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

$$\{2, \{-1, 0, 2\}\}$$

Click Here to Go Back To Questions

[32] Answers for Set No: XXXII

(a) The eigenvalues are $\{-4, 1, 0\}$ and the eigenvector(s) are

$$\{-4, \{-1, -1, 1\}\} \quad \{1, \{0, -1, 1\}\} \quad \{0, \{1, 1, 0\}\}$$

(b) The eigenvalues are $\{1, 1, 0\}$ and the eigenvector(s) are

$$\{1, \{0, 0, 1\}\}$$
 $\{1, \{1, 1, 0\}\}$ $\{0, \{2, 1, 0\}\}$

(c) The eigenvalues are $\{2,2,-1\}$ and the eigenvector(s) are

$$\{2, \{1, 1, 0\}\}$$
 $\{-1, \{-2, -1, 2\}\}$

(d) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{0, 0, 1\}\}$$
 $\{-2, \{-1, 1, 0\}\}$

(e) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

 $\{3, \{1, 0, 1\}\}$

[33] Answers for Set No: XXXIII

(a) The eigenvalues are $\{2, -1, 0\}$ and the eigenvector(s) are

$$\{2, \{1, 1, 0\}\}$$
 $\{-1, \{0, -1, 1\}\}$ $\{0, \{-3, -4, 2\}\}$

(b) The eigenvalues are $\{-3, -3, 1\}$ and the eigenvector(s) are

$$\{-3, \{0, 1, 1\}\} \quad \{-3, \{1, 0, 0\}\} \quad \{1, \{-2, 1, 0\}\}$$

(c) The eigenvalues are $\{-2, -2, 1\}$ and the eigenvector(s) are

$$\{-2, \{-3, 1, 2\}\}$$
 $\{1, \{-1, 1, 1\}\}$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 1, 1\}\}$$
 $\{-1, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

 $\{3,\{1,0,1\}\}$

Click Here to Go Back To Questions

[34] Answers for Set No: XXXIV

(a) The eigenvalues are $\{-3, 2, 0\}$ and the eigenvector(s) are

 $\{-3, \{0, -1, 1\}\}$ $\{2, \{1, 1, 0\}\}$ $\{0, \{-3, -4, 2\}\}$

(b) The eigenvalues are $\{1, 1, 0\}$ and the eigenvector(s) are

$$\{1, \{0, -1, 2\}\} \quad \{1, \{1, 0, 0\}\} \quad \{0, \{-3, -1, 1\}\}$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$\{3, \{-1, 0, 1\}\}$$
 $\{-2, \{-3, -1, 2\}\}$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 0, 1\}\}$$
 $\{-1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{-3, -3, -3\}$ and the eigenvector(s) are

 $\{-3, \{-1, 2, 0\}\}$

[35] Answers for Set No: XXXV

(a) The eigenvalues are $\{4, 3, -2\}$ and the eigenvector(s) are

$$\{4, \{-1, 1, 0\}\}$$
 $\{3, \{-1, 1, 1\}\}$ $\{-2, \{1, 0, 1\}\}$

(b) The eigenvalues are $\{2, 1, 1\}$ and the eigenvector(s) are

$$\{2, \{-1, 0, 2\}\} \quad \{1, \{0, 0, 1\}\} \quad \{1, \{-2, 1, 0\}\}$$

(c) The eigenvalues are $\{-1, 1, 1\}$ and the eigenvector(s) are

$$\{-1, \{2, 1, 2\}\} \quad \{1, \{1, 1, 2\}\}$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 0, 1\}\}$$
 $\{-1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{-1, -1, 1\}\}$$

Click Here to Go Back To Questions

[36] Answers for Set No: XXXVI

(a) The eigenvalues are $\{3, -2, 1\}$ and the eigenvector(s) are

$$\{3, \{-1, 1, 0\}\} \quad \{-2, \{-2, -1, 2\}\} \quad \{1, \{-1, 0, 1\}\}$$

(b) The eigenvalues are $\{-2,2,2\}$ and the eigenvector(s) are

$$\{-2, \{1, 0, 1\}\} \quad \{2, \{0, 0, 1\}\} \quad \{2, \{1, 1, 0\}\}$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$\{-1, \{1, 0, 0\}\}$$
 $\{0, \{2, 2, 1\}\}$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 1, 2\}\}$$
 $\{-1, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2, \{-1, 1, 0\}\}$

[37] Answers for Set No: XXXVII

(a) The eigenvalues are $\{7, 2, 1\}$ and the eigenvector(s) are

$$\{7, \{-1, 1, 1\}\}$$
 $\{2, \{-2, 1, 1\}\}$ $\{1, \{-1, 1, 0\}\}$

(b) The eigenvalues are $\{2, 2, 0\}$ and the eigenvector(s) are

$$\{2, \{1, 0, 2\}\} \quad \{2, \{1, 2, 0\}\} \quad \{0, \{0, -2, 1\}\}$$

(c) The eigenvalues are $\{2, 1, 1\}$ and the eigenvector(s) are

$$\{2, \{-1, 1, 0\}\}$$
 $\{1, \{1, 0, 1\}\}$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{0, 0, 1\}\}$$
 $\{1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2,\{2,1,1\}\}$

Click Here to Go Back To Questions

[38] Answers for Set No: XXXVIII

(a) The eigenvalues are $\{2, 1, 0\}$ and the eigenvector(s) are

 $\{2,\{-1,0,1\}\} \quad \{1,\{-1,1,0\}\} \quad \{0,\{-2,-1,2\}\}$

(b) The eigenvalues are $\{2, 2, 1\}$ and the eigenvector(s) are

$$\{2, \{0, 0, 1\}\} \quad \{2, \{-1, 1, 0\}\} \quad \{1, \{1, 0, 1\}\}$$

(c) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3, \{-1, -1, 1\}\}$$
 $\{2, \{1, 1, 0\}\}$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{2, 0, 1\}\}$$
 $\{1, \{0, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2, \{2, 1, 2\}\}$

[39] Answers for Set No: XXXIX

(a) The eigenvalues are $\{5, 1, 0\}$ and the eigenvector(s) are

$$\{5, \{-1, 1, 1\}\}$$
 $\{1, \{-2, 1, 1\}\}$ $\{0, \{-1, 1, 0\}\}$

(b) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3,\{-1,0,3\}\} \quad \{3,\{4,3,0\}\} \quad \{2,\{1,1,0\}\}$$

(c) The eigenvalues are $\{3, 2, 2\}$ and the eigenvector(s) are

$$\{3,\{1,0,1\}\}$$
 $\{2,\{1,-1,3\}\}$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{0, 0, 1\}\}$$
 $\{1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{-1, -1, -1\}$ and the eigenvector(s) are

 $\{-1, \{1, 0, 1\}\}$

Click Here to Go Back To Questions

[40] Answers for Set No: XL

(a) The eigenvalues are $\{3, 2, 0\}$ and the eigenvector(s) are

 $\{3, \{-1, 2, 3\}\}$ $\{2, \{-3, 5, 6\}\}$ $\{0, \{-1, 1, 1\}\}$

(b) The eigenvalues are $\{3, 3, 1\}$ and the eigenvector(s) are

$$\{3, \{0, -1, 1\}\}$$
 $\{3, \{1, 0, 0\}\}$ $\{1, \{1, 0, 1\}\}$

(c) The eigenvalues are $\{2,2,-1\}$ and the eigenvector(s) are

$$\{2, \{1, 1, 0\}\}$$
 $\{-1, \{-2, -1, 2\}\}$

(d) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

$$\{2, \{0, -1, 2\}\}$$
 $\{2, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

 $\{1, \{0, 0, 1\}\}$

[41] Answers for Set No: XLI

(a) The eigenvalues are $\{5, -2, 1\}$ and the eigenvector(s) are

$$\{5, \{-1, 1, 1\}\}$$
 $\{-2, \{0, 1, 0\}\}$ $\{1, \{-2, 2, 1\}\}$

(b) The eigenvalues are $\{3, 3, 1\}$ and the eigenvector(s) are

$$\{3, \{-1, 0, 1\}\} \quad \{3, \{0, 1, 0\}\} \quad \{1, \{-1, -1, 2\}\}$$

(c) The eigenvalues are $\{-2,-2,1\}$ and the eigenvector (s) are

$$\{-2, \{-3, 1, 2\}\}$$
 $\{1, \{-1, 1, 1\}\}$

(d) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

$$\{3, \{2, 0, 1\}\}$$
 $\{3, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

$$\{2, \{-1, 0, 2\}\}$$

Click Here to Go Back To Questions

[42] Answers for Set No: XLII

(a) The eigenvalues are $\{-2,-1,0\}$ and the eigenvector(s) are

$$\{-2, \{1, -1, 2\}\} \quad \{-1, \{1, 1, 1\}\} \quad \{0, \{0, -1, 1\}\}$$

(b) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3, \{0, 0, 1\}\} \quad \{3, \{-1, 2, 0\}\} \quad \{2, \{-1, 1, 2\}\}$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$\{3, \{-1, 0, 1\}\}$$
 $\{-2, \{-3, -1, 2\}\}$

(d) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

$$\{3, \{1, 0, 2\}\}$$
 $\{3, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

 $\{2, \{-1, 0, 2\}\}$

[43] Answers for Set No: XLIII

(a) The eigenvalues are $\{-5, -3, 2\}$ and the eigenvector(s) are

$$\{-5, \{0, -1, 1\}\} \quad \{-3, \{-1, -3, 3\}\} \quad \{2, \{1, 1, 0\}\}$$

(b) The eigenvalues are $\{-3, -3, -1\}$ and the eigenvector(s) are

$$\{-3, \{0, -1, 1\}\} \quad \{-3, \{1, 0, 0\}\} \quad \{-1, \{2, 0, 1\}\}$$

(c) The eigenvalues are $\{-1, 1, 1\}$ and the eigenvector(s) are

$$\{-1, \{2, 1, 2\}\} \quad \{1, \{1, 1, 2\}\}$$

(d) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$\{-3, \{-1, 0, 1\}\}$$
 $\{-3, \{-1, 1, 0\}\}$

(e) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

 $\{3,\{1,0,1\}\}$

Click Here to Go Back To Questions

[44] Answers for Set No: XLIV

(a) The eigenvalues are $\{4, 2, -1\}$ and the eigenvector(s) are

 $\{4,\{-2,-2,1\}\} \hspace{0.1in} \{2,\{-2,-1,2\}\} \hspace{0.1in} \{-1,\{-1,0,1\}\}$

(b) The eigenvalues are $\{-3, -2, -2\}$ and the eigenvector(s) are

$$\{-3, \{-1, 1, 1\}\} \quad \{-2, \{-3, 0, 2\}\} \quad \{-2, \{0, 1, 0\}\}$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$\{-1, \{1, 0, 0\}\}$$
 $\{0, \{2, 2, 1\}\}$

(d) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{-2, 0, 1\}\}$$
 $\{-2, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

 $\{3, \{1, 0, 1\}\}$

[45] Answers for Set No: XLV

(a) The eigenvalues are $\{3, 2, -1\}$ and the eigenvector(s) are

$$\{3, \{-1, 1, 0\}\}$$
 $\{2, \{-1, 1, 1\}\}$ $\{-1, \{1, 0, 1\}\}$

(b) The eigenvalues are $\{3, -2, -2\}$ and the eigenvector(s) are

$$\{3,\{-1,-1,1\}\} \quad \{-2,\{-1,0,1\}\} \quad \{-2,\{1,1,0\}\}$$

(c) The eigenvalues are $\{2, 1, 1\}$ and the eigenvector(s) are

$$\{2, \{-1, 1, 0\}\}$$
 $\{1, \{1, 0, 1\}\}$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$\{-2, \{-1, 0, 1\}\}$$
 $\{-2, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{-3, -3, -3\}$ and the eigenvector(s) are

$$\{-3, \{-1, 2, 0\}\}$$

Click Here to Go Back To Questions

[46] Answers for Set No: XLVI

(a) The eigenvalues are $\{3, 1, 0\}$ and the eigenvector(s) are

 $\{3,\{-1,2,1\}\} \quad \{1,\{-1,1,0\}\} \quad \{0,\{-1,1,1\}\}$

(b) The eigenvalues are $\{-3, -3, -1\}$ and the eigenvector(s) are

$$\{-3,\{1,0,1\}\} \quad \{-3,\{0,1,0\}\} \quad \{-1,\{2,1,1\}\}$$

(c) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3, \{-1, -1, 1\}\}$$
 $\{2, \{1, 1, 0\}\}$

(d) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{0, 0, 1\}\}$$
 $\{-2, \{-1, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2, \{-1, -1, 1\}\}$

[47] Answers for Set No: XLVII

(a) The eigenvalues are $\{4, 2, -1\}$ and the eigenvector(s) are

$$\{4, \{-1, 1, 1\}\} \quad \{2, \{-2, 3, 1\}\} \quad \{-1, \{-1, 1, 0\}\}$$

(b) The eigenvalues are $\{-3, -1, -1\}$ and the eigenvector(s) are

$$\{-3, \{2, 1, 1\}\} \quad \{-1, \{1, 0, 1\}\} \quad \{-1, \{0, 1, 0\}\}$$

(c) The eigenvalues are $\{3, 2, 2\}$ and the eigenvector(s) are

$$\{3, \{1, 0, 1\}\}$$
 $\{2, \{1, -1, 3\}\}$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 1, 1\}\}$$
 $\{-1, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{-1, 1, 0\}\}$$

Click Here to Go Back To Questions

[48] Answers for Set No: XLVIII

(a) The eigenvalues are $\{4, -2, 1\}$ and the eigenvector(s) are

 $\{4,\{-1,1,1\}\} \quad \{-2,\{0,1,0\}\} \quad \{1,\{-2,2,1\}\}$

(b) The eigenvalues are $\{-2, -2, -1\}$ and the eigenvector(s) are

$$\{-2,\{1,0,1\}\} \quad \{-2,\{-1,2,0\}\} \quad \{-1,\{2,-3,1\}\}$$

(c) The eigenvalues are $\{2, 2, -1\}$ and the eigenvector(s) are

$$\{2, \{1, 1, 0\}\}$$
 $\{-1, \{-2, -1, 2\}\}$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 0, 1\}\}$$
 $\{-1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2, \{2, 1, 1\}\}$

[49] Answers for Set No: XLIX

(a) The eigenvalues are $\{4, -2, 1\}$ and the eigenvector(s) are

$$\{4, \{-1, 1, 1\}\} \quad \{-2, \{-1, 1, 0\}\} \quad \{1, \{-2, 1, 1\}\}$$

(b) The eigenvalues are $\{-2, -1, -1\}$ and the eigenvector(s) are

$$\{-2, \{3, 1, 0\}\} \quad \{-1, \{0, 0, 1\}\} \quad \{-1, \{2, 1, 0\}\}$$

(c) The eigenvalues are $\{-2, -2, 1\}$ and the eigenvector(s) are

$$\{-2, \{-3, 1, 2\}\} \quad \{1, \{-1, 1, 1\}\}$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 0, 1\}\}$$
 $\{-1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2,\{2,1,2\}\}$

Click Here to Go Back To Questions

[50] Answers for Set No: L

(a) The eigenvalues are $\{-3, 2, 0\}$ and the eigenvector(s) are

 $\{-3, \{0, 1, 0\}\} \quad \{2, \{-1, 1, 1\}\} \quad \{0, \{-2, 2, 1\}\}$

(b) The eigenvalues are $\{3,-1,-1\}$ and the eigenvector(s) are

$$\{3,\{1,0,1\}\} \quad \{-1,\{1,0,2\}\} \quad \{-1,\{1,1,0\}\}$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$\{3, \{-1, 0, 1\}\}$$
 $\{-2, \{-3, -1, 2\}\}$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 1, 2\}\}$$
 $\{-1, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

 $\{-1, \{1, 0, 1\}\}$

[51] Answers for Set No: LI

(a) The eigenvalues are $\{4, 1, 0\}$ and the eigenvector(s) are

$$\{4, \{0, 1, 0\}\} = \{1, \{1, 1, 1\}\} = \{0, \{3, 3, 2\}\}$$

(b) The eigenvalues are $\{-1, -1, 0\}$ and the eigenvector(s) are

$$\{-1, \{-3, 0, 1\}\} \quad \{-1, \{1, 1, 0\}\} \quad \{0, \{-1, 1, 1\}\}$$

(c) The eigenvalues are $\{-1, 1, 1\}$ and the eigenvector(s) are

$$\{-1, \{2, 1, 2\}\} \quad \{1, \{1, 1, 2\}\}$$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{0, 0, 1\}\}$$
 $\{1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

 $\{1,\{0,0,1\}\}$

Click Here to Go Back To Questions

[52] Answers for Set No: LII

(a) The eigenvalues are $\{-2, 1, 0\}$ and the eigenvector(s) are

 $\{-2, \{0, 1, 0\}\}$ $\{1, \{1, 2, 1\}\}$ $\{0, \{3, 6, 2\}\}$

(b) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$\{-1, \{0, 3, 1\}\} \quad \{-1, \{1, 0, 0\}\} \quad \{0, \{2, 2, 1\}\}$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$\{-1, \{1, 0, 0\}\}$$
 $\{0, \{2, 2, 1\}\}$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{2, 0, 1\}\}$$
 $\{1, \{0, 1, 0\}\}$

(e) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

 $\{2, \{-1, 0, 2\}\}$

[53] Answers for Set No: LIII

(a) The eigenvalues are $\{-2, -1, 0\}$ and the eigenvector(s) are

$$\{-2, \{-1, -1, 1\}\} \quad \{-1, \{1, 1, 0\}\} \quad \{0, \{0, -1, 1\}\}$$

(b) The eigenvalues are $\{1, 1, 0\}$ and the eigenvector(s) are

$$\{1, \{0, 0, 1\}\} \quad \{1, \{1, 1, 0\}\} \quad \{0, \{2, 1, 0\}\}$$

(c) The eigenvalues are $\{2, 1, 1\}$ and the eigenvector(s) are

$$\{2, \{-1, 1, 0\}\}$$
 $\{1, \{1, 0, 1\}\}$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{0, 0, 1\}\}$$
 $\{1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

$$\{2, \{-1, 0, 2\}\}$$

Click Here to Go Back To Questions

[54] Answers for Set No: LIV

(a) The eigenvalues are $\{-4,2,0\}$ and the eigenvector(s) are

$$\{-4, \{-1, 1, 0\}\} \quad \{2, \{-1, 1, 1\}\} \quad \{0, \{-2, 1, 1\}\}$$

(b) The eigenvalues are $\{-3,-3,1\}$ and the eigenvector(s) are

$$\{-3, \{0, 1, 1\}\} \quad \{-3, \{1, 0, 0\}\} \quad \{1, \{-2, 1, 0\}\}$$

(c) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3, \{-1, -1, 1\}\}$$
 $\{2, \{1, 1, 0\}\}$

(d) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

$$\{2, \{0, -1, 2\}\}$$
 $\{2, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

 $\{3, \{1, 0, 1\}\}$

[55] Answers for Set No: LV

(a) The eigenvalues are $\{2, -1, 0\}$ and the eigenvector(s) are

$$\{2, \{1, 3, 1\}\}$$
 $\{-1, \{0, 1, 1\}\}$ $\{0, \{1, 2, 1\}\}$

(b) The eigenvalues are $\{1, 1, 0\}$ and the eigenvector(s) are

$$\{1, \{0, -1, 2\}\} \quad \{1, \{1, 0, 0\}\} \quad \{0, \{-3, -1, 1\}\}$$

(c) The eigenvalues are $\{3, 2, 2\}$ and the eigenvector(s) are

$$\{3,\{1,0,1\}\}$$
 $\{2,\{1,-1,3\}\}$

(d) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

$$\{3, \{2, 0, 1\}\}$$
 $\{3, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

 $\{3,\{1,0,1\}\}$

Click Here to Go Back To Questions

[56] Answers for Set No: LVI

(a) The eigenvalues are $\{-2, 1, 0\}$ and the eigenvector(s) are

 $\{-2, \{0, -1, 1\}\} \quad \{1, \{1, 1, 0\}\} \quad \{0, \{-3, -4, 2\}\}$

(b) The eigenvalues are $\{2, 1, 1\}$ and the eigenvector(s) are

$$\{2, \{-1, 0, 2\}\} \quad \{1, \{0, 0, 1\}\} \quad \{1, \{-2, 1, 0\}\}$$

(c) The eigenvalues are $\{2, 2, -1\}$ and the eigenvector(s) are

$$\{2, \{1, 1, 0\}\}$$
 $\{-1, \{-2, -1, 2\}\}$

(d) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

$$\{3, \{1, 0, 2\}\}$$
 $\{3, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{-3, -3, -3\}$ and the eigenvector(s) are

 $\{-3, \{-1, 2, 0\}\}$

[57] Answers for Set No: LVII

(a) The eigenvalues are $\{-3, 1, 0\}$ and the eigenvector(s) are

$$\{-3, \{0, -1, 1\}\} \quad \{1, \{1, 1, 0\}\} \quad \{0, \{-3, -4, 2\}\}$$

(b) The eigenvalues are $\{-2,2,2\}$ and the eigenvector(s) are

$$\{-2, \{1, 0, 1\}\} \quad \{2, \{0, 0, 1\}\} \quad \{2, \{1, 1, 0\}\}$$

(c) The eigenvalues are $\{-2, -2, 1\}$ and the eigenvector(s) are

$$\{-2, \{-3, 1, 2\}\} \quad \{1, \{-1, 1, 1\}\}$$

(d) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$\{-3, \{-1, 0, 1\}\}$$
 $\{-3, \{-1, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{-1, -1, 1\}\}$$

Click Here to Go Back To Questions

[58] Answers for Set No: LVIII

(a) The eigenvalues are $\{2,-1,0\}$ and the eigenvector(s) are

$$\{2, \{-1, 1, 0\}\} \quad \{-1, \{1, -1, 1\}\} \quad \{0, \{3, -2, 1\}\}$$

(b) The eigenvalues are $\{2, 2, 0\}$ and the eigenvector(s) are

$$\{2, \{1, 0, 2\}\}$$
 $\{2, \{1, 2, 0\}\}$ $\{0, \{0, -2, 1\}\}$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$\{3, \{-1, 0, 1\}\}$$
 $\{-2, \{-3, -1, 2\}\}$

(d) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{-2, 0, 1\}\}$$
 $\{-2, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2, \{-1, 1, 0\}\}$

[59] Answers for Set No: LIX

(a) The eigenvalues are $\{-2,-1,0\}$ and the eigenvector(s) are

$$\{-2, \{-1, 0, 1\}\} \quad \{-1, \{-3, 1, 3\}\} \quad \{0, \{-1, 1, 2\}\}$$

(b) The eigenvalues are $\{2, 2, 1\}$ and the eigenvector(s) are

$$\{2, \{0, 0, 1\}\} \quad \{2, \{-1, 1, 0\}\} \quad \{1, \{1, 0, 1\}\}$$

(c) The eigenvalues are $\{-1, 1, 1\}$ and the eigenvector(s) are

$$\{-1, \{2, 1, 2\}\} \quad \{1, \{1, 1, 2\}\}$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$\{-2, \{-1, 0, 1\}\}$$
 $\{-2, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2,\{2,1,1\}\}$

Click Here to Go Back To Questions

[60] Answers for Set No: LX

(a) The eigenvalues are $\{5, 2, 1\}$ and the eigenvector(s) are

 $\{5, \{-1, 1, 1\}\} \quad \{2, \{-2, 1, 1\}\} \quad \{1, \{-1, 1, 0\}\}$

(b) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3, \{-1, 0, 3\}\} \quad \{3, \{4, 3, 0\}\} \quad \{2, \{1, 1, 0\}\}$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$\{-1, \{1, 0, 0\}\}$$
 $\{0, \{2, 2, 1\}\}$

(d) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{0, 0, 1\}\}$$
 $\{-2, \{-1, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2, \{2, 1, 2\}\}$

[61] Answers for Set No: LXI

(a) The eigenvalues are $\{-3,-1,0\}$ and the eigenvector(s) are

$$\{-3, \{1, 1, 0\}\} \quad \{-1, \{-1, -1, 1\}\} \quad \{0, \{0, -1, 1\}\}$$

(b) The eigenvalues are $\{3, 3, 1\}$ and the eigenvector(s) are

$$\{3, \{0, -1, 1\}\} \quad \{3, \{1, 0, 0\}\} \quad \{1, \{1, 0, 1\}\}\$$

(c) The eigenvalues are $\{2, 1, 1\}$ and the eigenvector(s) are

$$\{2, \{-1, 1, 0\}\}$$
 $\{1, \{1, 0, 1\}\}$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 1, 1\}\}$$
 $\{-1, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

 $\{-1, \{1, 0, 1\}\}$

Click Here to Go Back To Questions

[62] Answers for Set No: LXII

(a) The eigenvalues are $\{-4,3,0\}$ and the eigenvector(s) are

$$\{-4, \{1, 0, 1\}\} \quad \{3, \{-1, 1, 1\}\} \quad \{0, \{-1, 1, 0\}\}$$

(b) The eigenvalues are $\{3, 3, 1\}$ and the eigenvector(s) are

$$\{3, \{-1, 0, 1\}\} \quad \{3, \{0, 1, 0\}\} \quad \{1, \{-1, -1, 2\}\}$$

(c) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3,\{-1,-1,1\}\} \quad \{2,\{1,1,0\}\}$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 0, 1\}\}$$
 $\{-1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

 $\{1, \{0, 0, 1\}\}$

[63] Answers for Set No: LXIII

(a) The eigenvalues are $\{3, 1, 0\}$ and the eigenvector(s) are

$$\{3, \{-1, 1, 1\}\}$$
 $\{1, \{-2, 1, 1\}\}$ $\{0, \{-1, 1, 0\}\}$

(b) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3, \{0, 0, 1\}\} \quad \{3, \{-1, 2, 0\}\} \quad \{2, \{-1, 1, 2\}\}$$

(c) The eigenvalues are $\{3, 2, 2\}$ and the eigenvector(s) are

$$\{3,\{1,0,1\}\}$$
 $\{2,\{1,-1,3\}\}$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 0, 1\}\}$$
 $\{-1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

$$\{2, \{-1, 0, 2\}\}$$

Click Here to Go Back To Questions

[64] Answers for Set No: LXIV

(a) The eigenvalues are $\{7, 3, -1\}$ and the eigenvector(s) are

 $\{7,\{-1,1,1\}\} \quad \{3,\{-2,3,1\}\} \quad \{-1,\{-1,1,0\}\}$

(b) The eigenvalues are $\{-3, -3, -1\}$ and the eigenvector(s) are

$$\{-3, \{0, -1, 1\}\} \quad \{-3, \{1, 0, 0\}\} \quad \{-1, \{2, 0, 1\}\}$$

(c) The eigenvalues are $\{2,2,-1\}$ and the eigenvector(s) are

$$\{2, \{1, 1, 0\}\}$$
 $\{-1, \{-2, -1, 2\}\}$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 1, 2\}\}$$
 $\{-1, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

 $\{2, \{-1, 0, 2\}\}$

[65] Answers for Set No: LXV

(a) The eigenvalues are $\{5, 2, -1\}$ and the eigenvector(s) are

$$\{5, \{-1, 1, 1\}\}$$
 $\{2, \{-2, 3, 1\}\}$ $\{-1, \{-1, 1, 0\}\}$

(b) The eigenvalues are $\{-3, -2, -2\}$ and the eigenvector(s) are

$$\{-3, \{-1, 1, 1\}\} \quad \{-2, \{-3, 0, 2\}\} \quad \{-2, \{0, 1, 0\}\}$$

(c) The eigenvalues are $\{-2, -2, 1\}$ and the eigenvector(s) are

$$\{-2, \{-3, 1, 2\}\}$$
 $\{1, \{-1, 1, 1\}\}$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{0, 0, 1\}\}$$
 $\{1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

 $\{3,\{1,0,1\}\}$

Click Here to Go Back To Questions

[66] Answers for Set No: LXVI

(a) The eigenvalues are $\{4, 2, 1\}$ and the eigenvector(s) are

 $\{4,\{0,1,0\}\} \quad \{2,\{-1,6,3\}\} \quad \{1,\{-1,3,2\}\}$

(b) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$\{3,\{-1,-1,1\}\} \quad \{-2,\{-1,0,1\}\} \quad \{-2,\{1,1,0\}\}$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$\{3, \{-1, 0, 1\}\}$$
 $\{-2, \{-3, -1, 2\}\}$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{2, 0, 1\}\}$$
 $\{1, \{0, 1, 0\}\}$

(e) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

 $\{3, \{1, 0, 1\}\}$

[67] Answers for Set No: LXVII

(a) The eigenvalues are $\{-3, -2, 0\}$ and the eigenvector(s) are

$$\{-3, \{-1, 1, 0\}\} \quad \{-2, \{1, -2, 1\}\} \quad \{0, \{0, -3, 2\}\}$$

(b) The eigenvalues are $\{-3, -3, -1\}$ and the eigenvector(s) are

$$\{-3, \{1, 0, 1\}\} \quad \{-3, \{0, 1, 0\}\} \quad \{-1, \{2, 1, 1\}\}$$

(c) The eigenvalues are $\{-1, 1, 1\}$ and the eigenvector(s) are

$$\{-1, \{2, 1, 2\}\} \quad \{1, \{1, 1, 2\}\}$$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{0, 0, 1\}\}$$
 $\{1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{-3, -3, -3\}$ and the eigenvector(s) are

$$\{-3, \{-1, 2, 0\}\}$$

Click Here to Go Back To Questions

[68] Answers for Set No: LXVIII

(a) The eigenvalues are $\{-4,3,-2\}$ and the eigenvector(s) are

 $\{-4,\{-1,1,0\}\} \quad \{3,\{-1,1,1\}\} \quad \{-2,\{-2,3,1\}\}$

(b) The eigenvalues are $\{-3, -1, -1\}$ and the eigenvector(s) are

$$\{-3, \{2, 1, 1\}\} \quad \{-1, \{1, 0, 1\}\} \quad \{-1, \{0, 1, 0\}\}$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$\{-1, \{1, 0, 0\}\}$$
 $\{0, \{2, 2, 1\}\}$

(d) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

$$\{2, \{0, -1, 2\}\}$$
 $\{2, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2, \{-1, -1, 1\}\}$

[69] Answers for Set No: LXIX

(a) The eigenvalues are $\{-3, -2, 0\}$ and the eigenvector(s) are

$$\{-3, \{-1, 1, 1\}\} \quad \{-2, \{-1, 1, 2\}\} \quad \{0, \{-1, 0, 1\}\}$$

(b) The eigenvalues are $\{-2, -2, -1\}$ and the eigenvector(s) are

$$\{-2, \{1, 0, 1\}\} \quad \{-2, \{-1, 2, 0\}\} \quad \{-1, \{2, -3, 1\}\}$$

(c) The eigenvalues are $\{2, 1, 1\}$ and the eigenvector(s) are

$$\{2, \{-1, 1, 0\}\}$$
 $\{1, \{1, 0, 1\}\}$

(d) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

$$\{3, \{2, 0, 1\}\}$$
 $\{3, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{-1, 1, 0\}\}$$

Click Here to Go Back To Questions

[70] Answers for Set No: LXX

(a) The eigenvalues are $\{4, 3, -1\}$ and the eigenvector(s) are

 $\{4, \{3, 2, 3\}\}$ $\{3, \{2, 1, 2\}\}$ $\{-1, \{1, 0, 0\}\}$

(b) The eigenvalues are $\{-2, -1, -1\}$ and the eigenvector(s) are

$$\{-2, \{3, 1, 0\}\} \quad \{-1, \{0, 0, 1\}\} \quad \{-1, \{2, 1, 0\}\}$$

(c) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3, \{-1, -1, 1\}\}$$
 $\{2, \{1, 1, 0\}\}$

(d) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

$$\{3, \{1, 0, 2\}\}$$
 $\{3, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2, \{2, 1, 1\}\}$

[71] Answers for Set No: LXXI

(a) The eigenvalues are $\{4, 3, -1\}$ and the eigenvector(s) are

$$\{4, \{1, 1, 2\}\}$$
 $\{3, \{1, 2, 3\}\}$ $\{-1, \{1, 1, 1\}\}$

(b) The eigenvalues are $\{3, -1, -1\}$ and the eigenvector(s) are

$$\{3,\{1,0,1\}\} \quad \{-1,\{1,0,2\}\} \quad \{-1,\{1,1,0\}\}$$

(c) The eigenvalues are $\{3, 2, 2\}$ and the eigenvector(s) are

$$\{3, \{1, 0, 1\}\}$$
 $\{2, \{1, -1, 3\}\}$

(d) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$\{-3, \{-1, 0, 1\}\}$$
 $\{-3, \{-1, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2,\{2,1,2\}\}$

Click Here to Go Back To Questions

[72] Answers for Set No: LXXII

(a) The eigenvalues are $\{-3, 1, 0\}$ and the eigenvector(s) are

 $\{-3, \{1, 1, 0\}\} \quad \{1, \{0, -1, 1\}\} \quad \{0, \{-1, -1, 1\}\}$

(b) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$\{-1, \{-3, 0, 1\}\} \quad \{-1, \{1, 1, 0\}\} \quad \{0, \{-1, 1, 1\}\}$$

(c) The eigenvalues are $\{2, 2, -1\}$ and the eigenvector(s) are

$$\{2, \{1, 1, 0\}\}$$
 $\{-1, \{-2, -1, 2\}\}$

(d) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{-2, 0, 1\}\}$$
 $\{-2, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

 $\{-1, \{1, 0, 1\}\}$

[73] Answers for Set No: LXXIII

(a) The eigenvalues are $\{-2, 1, 0\}$ and the eigenvector(s) are

$$\{-2, \{0, 1, 1\}\} \quad \{1, \{-3, 8, 7\}\} \quad \{0, \{-1, 3, 3\}\}$$

(b) The eigenvalues are $\{-1, -1, 0\}$ and the eigenvector(s) are

$$\{-1, \{0, 3, 1\}\} \quad \{-1, \{1, 0, 0\}\} \quad \{0, \{2, 2, 1\}\}$$

(c) The eigenvalues are $\{-2, -2, 1\}$ and the eigenvector(s) are

$$\{-2, \{-3, 1, 2\}\}$$
 $\{1, \{-1, 1, 1\}\}$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$\{-2, \{-1, 0, 1\}\}$$
 $\{-2, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

 $\{1,\{0,0,1\}\}$

Click Here to Go Back To Questions

[74] Answers for Set No: LXXIV

(a) The eigenvalues are $\{-2, 1, 0\}$ and the eigenvector(s) are

$$\{-2, \{1, 1, 0\}\} \quad \{1, \{0, -1, 1\}\} \quad \{0, \{-1, -1, 1\}\}$$

(b) The eigenvalues are $\{1, 1, 0\}$ and the eigenvector(s) are

$$\{1, \{0, 0, 1\}\} \quad \{1, \{1, 1, 0\}\} \quad \{0, \{2, 1, 0\}\}$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$\{3, \{-1, 0, 1\}\}$$
 $\{-2, \{-3, -1, 2\}\}$

(d)~ The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$\{-2, \{0, 0, 1\}\}$$
 $\{-2, \{-1, 1, 0\}\}$

(e) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

 $\{2, \{-1, 0, 2\}\}$

[75] Answers for Set No: LXXV

(a) The eigenvalues are $\{4, 2, 0\}$ and the eigenvector(s) are

$$\{4, \{-1, 1, 1\}\} \quad \{2, \{-2, 1, 1\}\} \quad \{0, \{0, 1, 0\}\}$$

(b) The eigenvalues are $\{-3, -3, 1\}$ and the eigenvector(s) are

$$\{-3, \{0, 1, 1\}\} \quad \{-3, \{1, 0, 0\}\} \quad \{1, \{-2, 1, 0\}\}$$

(c) The eigenvalues are $\{-1, 1, 1\}$ and the eigenvector(s) are

$$\{-1, \{2, 1, 2\}\} \quad \{1, \{1, 1, 2\}\}$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 1, 1\}\}$$
 $\{-1, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

$$\{2, \{-1, 0, 2\}\}$$

Click Here to Go Back To Questions

[76] Answers for Set No: LXXVI

(a) The eigenvalues are $\{4, 2, 0\}$ and the eigenvector(s) are

 $\{4, \{-1, 1, 1\}\} \quad \{2, \{-2, 1, 1\}\} \quad \{0, \{-1, 1, 0\}\}$

(b) The eigenvalues are $\{1, 1, 0\}$ and the eigenvector(s) are

$$\{1, \{0, -1, 2\}\} \quad \{1, \{1, 0, 0\}\} \quad \{0, \{-3, -1, 1\}\}$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$\{-1, \{1, 0, 0\}\}$$
 $\{0, \{2, 2, 1\}\}$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 0, 1\}\}$$
 $\{-1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

 $\{3, \{1, 0, 1\}\}$

[77] Answers for Set No: LXXVII

(a) The eigenvalues are $\{-4, 3, -1\}$ and the eigenvector(s) are

$$\{-4, \{1, 0, 1\}\} \quad \{3, \{-1, 1, 1\}\} \quad \{-1, \{-1, 1, 0\}\}$$

(b) The eigenvalues are $\{2, 1, 1\}$ and the eigenvector(s) are

$$\{2, \{-1, 0, 2\}\} \quad \{1, \{0, 0, 1\}\} \quad \{1, \{-2, 1, 0\}\}$$

(c) The eigenvalues are $\{2, 1, 1\}$ and the eigenvector(s) are

$$\{2, \{-1, 1, 0\}\}$$
 $\{1, \{1, 0, 1\}\}$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 0, 1\}\} \{-1, \{2, 1, 0\}\}$$

(e) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

 $\{3,\{1,0,1\}\}$

Click Here to Go Back To Questions

[78] Answers for Set No: LXXVIII

(a) The eigenvalues are $\{2, 1, 0\}$ and the eigenvector(s) are

 $\{2,\{-2,-2,1\}\} \quad \{1,\{-2,-1,2\}\} \quad \{0,\{-1,0,1\}\}$

(b) The eigenvalues are $\{-2,2,2\}$ and the eigenvector(s) are

$$\{-2, \{1, 0, 1\}\} \quad \{2, \{0, 0, 1\}\} \quad \{2, \{1, 1, 0\}\}$$

(c) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3, \{-1, -1, 1\}\}$$
 $\{2, \{1, 1, 0\}\}$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 1, 2\}\}$$
 $\{-1, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{-3, -3, -3\}$ and the eigenvector(s) are

 $\{-3, \{-1, 2, 0\}\}$

[79] Answers for Set No: LXXIX

(a) The eigenvalues are $\{5, 3, 0\}$ and the eigenvector(s) are

$$\{5, \{1, -1, 1\}\} \quad \{3, \{1, -2, 1\}\} \quad \{0, \{1, 0, 0\}\}\$$

(b) The eigenvalues are $\{2, 2, 0\}$ and the eigenvector(s) are

$$\{2, \{1, 0, 2\}\} \quad \{2, \{1, 2, 0\}\} \quad \{0, \{0, -2, 1\}\}$$

(c) The eigenvalues are $\{3, 2, 2\}$ and the eigenvector(s) are

$$\{3,\{1,0,1\}\}$$
 $\{2,\{1,-1,3\}\}$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{0, 0, 1\}\}$$
 $\{1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{-1, -1, 1\}\}$$

Click Here to Go Back To Questions

[80] Answers for Set No: LXXX

(a) The eigenvalues are $\{-4,-3,2\}$ and the eigenvector(s) are

$$\{-4, \{-1, 1, 0\}\} \quad \{-3, \{-2, 3, 1\}\} \quad \{2, \{-1, 1, 1\}\}$$

(b) The eigenvalues are $\{2, 2, 1\}$ and the eigenvector(s) are

$$\{2, \{0, 0, 1\}\} \quad \{2, \{-1, 1, 0\}\} \quad \{1, \{1, 0, 1\}\}$$

(c) The eigenvalues are $\{2, 2, -1\}$ and the eigenvector(s) are

$$\{2,\{1,1,0\}\} \quad \{-1,\{-2,-1,2\}\}$$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{2, 0, 1\}\}$$
 $\{1, \{0, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2, \{-1, 1, 0\}\}$

[81] Answers for Set No: LXXXI

(a) The eigenvalues are $\{-4, 2, 1\}$ and the eigenvector(s) are

$$\{-4, \{-1, 1, 0\}\}$$
 $\{2, \{-1, 1, 1\}\}$ $\{1, \{-2, 1, 1\}\}$

(b) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3, \{-1, 0, 3\}\}$$
 $\{3, \{4, 3, 0\}\}$ $\{2, \{1, 1, 0\}\}$

(c) The eigenvalues are $\{-2,-2,1\}$ and the eigenvector (s) are

$$\{-2, \{-3, 1, 2\}\}$$
 $\{1, \{-1, 1, 1\}\}$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{0, 0, 1\}\}$$
 $\{1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2,\{2,1,1\}\}$

Click Here to Go Back To Questions

[82] Answers for Set No: LXXXII

(a) The eigenvalues are $\{4, 2, 0\}$ and the eigenvector(s) are

 $\{4, \{-1, 1, 2\}\} \quad \{2, \{-2, 3, 4\}\} \quad \{0, \{-1, 3, 3\}\}$

(b) The eigenvalues are $\{3, 3, 1\}$ and the eigenvector(s) are

$$\{3, \{0, -1, 1\}\}$$
 $\{3, \{1, 0, 0\}\}$ $\{1, \{1, 0, 1\}\}$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$\{3, \{-1, 0, 1\}\}$$
 $\{-2, \{-3, -1, 2\}\}$

(d) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

$$\{2, \{0, -1, 2\}\}$$
 $\{2, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2, \{2, 1, 2\}\}$

[83] Answers for Set No: LXXXIII

(a) The eigenvalues are $\{3, 1, 0\}$ and the eigenvector(s) are

$$\{3, \{-1, 1, 0\}\}$$
 $\{1, \{-1, 0, 1\}\}$ $\{0, \{-2, -1, 2\}\}$

(b) The eigenvalues are $\{3, 3, 1\}$ and the eigenvector(s) are

$$\{3,\{-1,0,1\}\} \quad \{3,\{0,1,0\}\} \quad \{1,\{-1,-1,2\}\}$$

(c) The eigenvalues are $\{-1, 1, 1\}$ and the eigenvector(s) are

$$\{-1, \{2, 1, 2\}\} \quad \{1, \{1, 1, 2\}\}$$

(d) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

$$\{3, \{2, 0, 1\}\}$$
 $\{3, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

 $\{-1,\{1,0,1\}\}$

Click Here to Go Back To Questions

[84] Answers for Set No: LXXXIV

(a) The eigenvalues are $\{-2,-1,0\}$ and the eigenvector(s) are

$$\{-2, \{0, 1, 1\}\} \quad \{-1, \{1, 3, 1\}\} \quad \{0, \{1, 2, 1\}\}$$

(b) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3, \{0, 0, 1\}\} \quad \{3, \{-1, 2, 0\}\} \quad \{2, \{-1, 1, 2\}\}$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$\{-1, \{1, 0, 0\}\}$$
 $\{0, \{2, 2, 1\}\}$

(d) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

$$\{3, \{1, 0, 2\}\}$$
 $\{3, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

 $\{1, \{0, 0, 1\}\}$

[85] Answers for Set No: LXXXV

(a) The eigenvalues are $\{2, 1, 0\}$ and the eigenvector(s) are

$$\{2, \{-1, 1, 0\}\} \quad \{1, \{-1, 2, 1\}\} \quad \{0, \{-1, 1, 1\}\}$$

(b) The eigenvalues are $\{-3, -3, -1\}$ and the eigenvector(s) are

$$\{-3, \{0, -1, 1\}\} \quad \{-3, \{1, 0, 0\}\} \quad \{-1, \{2, 0, 1\}\}$$

(c) The eigenvalues are $\{2, 1, 1\}$ and the eigenvector(s) are

$$\{2, \{-1, 1, 0\}\}$$
 $\{1, \{1, 0, 1\}\}$

(d) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$\{-3, \{-1, 0, 1\}\}$$
 $\{-3, \{-1, 1, 0\}\}$

(e) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

$$\{2, \{-1, 0, 2\}\}$$

Click Here to Go Back To Questions

[86] Answers for Set No: LXXXVI

(a) The eigenvalues are $\{5, 3, 1\}$ and the eigenvector(s) are

 $\{5, \{-1, 1, 1\}\} \quad \{3, \{-2, 1, 1\}\} \quad \{1, \{-1, 1, 0\}\}$

(b) The eigenvalues are $\{-3, -2, -2\}$ and the eigenvector(s) are

$$\{-3, \{-1, 1, 1\}\} \quad \{-2, \{-3, 0, 2\}\} \quad \{-2, \{0, 1, 0\}\}$$

(c) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3, \{-1, -1, 1\}\}$$
 $\{2, \{1, 1, 0\}\}$

(d) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{-2, 0, 1\}\}$$
 $\{-2, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

 $\{2, \{-1, 0, 2\}\}$

[87] Answers for Set No: LXXXVII

(a) The eigenvalues are $\{3, 2, 0\}$ and the eigenvector(s) are

$$\{3, \{-1, 1, 1\}\} \quad \{2, \{-2, 1, 1\}\} \quad \{0, \{0, 1, 0\}\}$$

(b) The eigenvalues are $\{3, -2, -2\}$ and the eigenvector(s) are

$$\{3,\{-1,-1,1\}\} \quad \{-2,\{-1,0,1\}\} \quad \{-2,\{1,1,0\}\}$$

(c) The eigenvalues are $\{3, 2, 2\}$ and the eigenvector(s) are

$$\{3, \{1, 0, 1\}\}$$
 $\{2, \{1, -1, 3\}\}$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$\{-2, \{-1, 0, 1\}\}$$
 $\{-2, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

 $\{3,\{1,0,1\}\}$

Click Here to Go Back To Questions

[88] Answers for Set No: LXXXVIII

(a) The eigenvalues are $\{-5,-2,1\}$ and the eigenvector(s) are

$$\{-5, \{-2, 1, 2\}\} \quad \{-2, \{-2, 2, 1\}\} \quad \{1, \{-1, 1, 0\}\}$$

(b) The eigenvalues are $\{-3, -3, -1\}$ and the eigenvector(s) are

$$\{-3, \{1, 0, 1\}\} \quad \{-3, \{0, 1, 0\}\} \quad \{-1, \{2, 1, 1\}\}$$

(c) The eigenvalues are $\{2,2,-1\}$ and the eigenvector(s) are

$$\{2, \{1, 1, 0\}\}$$
 $\{-1, \{-2, -1, 2\}\}$

(d) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{0, 0, 1\}\}$$
 $\{-2, \{-1, 1, 0\}\}$

(e) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

 $\{3, \{1, 0, 1\}\}$

[89] Answers for Set No: LXXXIX

(a) The eigenvalues are $\{3, 1, 0\}$ and the eigenvector(s) are

$$\{3, \{-1, 1, 1\}\}$$
 $\{1, \{-2, 3, 1\}\}$ $\{0, \{-1, 1, 0\}\}$

(b) The eigenvalues are $\{-3, -1, -1\}$ and the eigenvector(s) are

$$\{-3, \{2, 1, 1\}\} \quad \{-1, \{1, 0, 1\}\} \quad \{-1, \{0, 1, 0\}\}$$

(c) The eigenvalues are $\{-2, -2, 1\}$ and the eigenvector(s) are

$$\{-2, \{-3, 1, 2\}\} \quad \{1, \{-1, 1, 1\}\}$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 1, 1\}\}$$
 $\{-1, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{-3, -3, -3\}$ and the eigenvector(s) are

$$\{-3, \{-1, 2, 0\}\}$$

Click Here to Go Back To Questions

[90] Answers for Set No: XC

(a) The eigenvalues are $\{3, 2, 0\}$ and the eigenvector(s) are

 $\{3,\{-1,1,1\}\} \quad \{2,\{-2,1,1\}\} \quad \{0,\{-1,1,0\}\}$

(b) The eigenvalues are $\{-2, -2, -1\}$ and the eigenvector(s) are

$$\{-2, \{1, 0, 1\}\} \quad \{-2, \{-1, 2, 0\}\} \quad \{-1, \{2, -3, 1\}\}$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$\{3, \{-1, 0, 1\}\}$$
 $\{-2, \{-3, -1, 2\}\}$

(d) The eigenvalues are $\{-1, -1, -1\}$ and the eigenvector(s) are

$$\{-1, \{0, 0, 1\}\}$$
 $\{-1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{-1, -1, 1\}\}$$

[91] Answers for Set No: XCI

(a) The eigenvalues are $\{-3, -2, 0\}$ and the eigenvector(s) are

$$\{-3, \{1, -1, 3\}\} \quad \{-2, \{1, -1, 2\}\} \quad \{0, \{1, 0, 1\}\}$$

(b) The eigenvalues are $\{-2, -1, -1\}$ and the eigenvector(s) are

$$\{-2, \{3, 1, 0\}\} \quad \{-1, \{0, 0, 1\}\} \quad \{-1, \{2, 1, 0\}\}$$

(c) The eigenvalues are $\{-1, 1, 1\}$ and the eigenvector(s) are

$$\{-1, \{2, 1, 2\}\} \quad \{1, \{1, 1, 2\}\}$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 0, 1\}\}$$
 $\{-1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{-1, 1, 0\}\}$$

Click Here to Go Back To Questions

[92] Answers for Set No: XCII

(a) The eigenvalues are $\{3, -1, 0\}$ and the eigenvector(s) are

$$\{3, \{0, -1, 1\}\} \quad \{-1, \{1, -3, 1\}\} \quad \{0, \{1, -2, 1\}\}$$

(b) The eigenvalues are $\{3,-1,-1\}$ and the eigenvector(s) are

$$\{3,\{1,0,1\}\} \quad \{-1,\{1,0,2\}\} \quad \{-1,\{1,1,0\}\}$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$\{-1, \{1, 0, 0\}\}$$
 $\{0, \{2, 2, 1\}\}$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 1, 2\}\}$$
 $\{-1, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2, \{2, 1, 1\}\}$

[93] Answers for Set No: XCIII

(a) The eigenvalues are $\{7, 2, -1\}$ and the eigenvector(s) are

$$\{7, \{-1, 1, 1\}\} \quad \{2, \{-2, 3, 1\}\} \quad \{-1, \{-1, 1, 0\}\}$$

(b) The eigenvalues are $\{-1, -1, 0\}$ and the eigenvector(s) are

$$\{-1, \{-3, 0, 1\}\} \quad \{-1, \{1, 1, 0\}\} \quad \{0, \{-1, 1, 1\}\}$$

(c) The eigenvalues are $\{2, 1, 1\}$ and the eigenvector(s) are

$$\{2, \{-1, 1, 0\}\}$$
 $\{1, \{1, 0, 1\}\}$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{0, 0, 1\}\}$$
 $\{1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2,\{2,1,2\}\}$

Click Here to Go Back To Questions

[94] Answers for Set No: XCIV

(a) The eigenvalues are $\{5, 3, 0\}$ and the eigenvector(s) are

 $\{5,\{1,3,1\}\} \quad \{3,\{1,2,1\}\} \quad \{0,\{0,1,1\}\}$

(b) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$\{-1, \{0, 3, 1\}\} \quad \{-1, \{1, 0, 0\}\} \quad \{0, \{2, 2, 1\}\}$$

(c) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3, \{-1, -1, 1\}\}$$
 $\{2, \{1, 1, 0\}\}$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{2, 0, 1\}\}$$
 $\{1, \{0, 1, 0\}\}$

(e) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

 $\{-1, \{1, 0, 1\}\}$

[95] Answers for Set No: XCV

(a) The eigenvalues are $\{-2, 1, 0\}$ and the eigenvector(s) are

$$\{-2, \{0, -3, 2\}\} \quad \{1, \{1, 0, 0\}\} \quad \{0, \{-1, -1, 1\}\}$$

(b) The eigenvalues are $\{1, 1, 0\}$ and the eigenvector(s) are

$$\{1, \{0, 0, 1\}\} \quad \{1, \{1, 1, 0\}\} \quad \{0, \{2, 1, 0\}\}$$

(c) The eigenvalues are $\{3, 2, 2\}$ and the eigenvector(s) are

$$\{3,\{1,0,1\}\}$$
 $\{2,\{1,-1,3\}\}$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{0, 0, 1\}\}$$
 $\{1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

 $\{1,\{0,0,1\}\}$

Click Here to Go Back To Questions

[96] Answers for Set No: XCVI

(a) The eigenvalues are $\{4, -2, 1\}$ and the eigenvector(s) are

 $\{4,\{0,-1,1\}\} \hspace{0.1in} \{-2,\{-1,-1,2\}\} \hspace{0.1in} \{1,\{-1,-3,3\}\}$

(b) The eigenvalues are $\{-3,-3,1\}$ and the eigenvector(s) are

$$\{-3, \{0, 1, 1\}\} \quad \{-3, \{1, 0, 0\}\} \quad \{1, \{-2, 1, 0\}\}$$

(c) The eigenvalues are $\{2, 2, -1\}$ and the eigenvector(s) are

$$\{2, \{1, 1, 0\}\}$$
 $\{-1, \{-2, -1, 2\}\}$

(d) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

$$\{2, \{0, -1, 2\}\}$$
 $\{2, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

 $\{2, \{-1, 0, 2\}\}$

[97] Answers for Set No: XCVII

(a) The eigenvalues are $\{4, 2, -1\}$ and the eigenvector(s) are

$$\{4, \{-2, -2, 1\}\} \quad \{2, \{-2, -1, 1\}\} \quad \{-1, \{-1, 0, 1\}\}$$

(b) The eigenvalues are $\{1, 1, 0\}$ and the eigenvector(s) are

$$\{1, \{0, -1, 2\}\} \quad \{1, \{1, 0, 0\}\} \quad \{0, \{-3, -1, 1\}\}$$

(c) The eigenvalues are $\{-2, -2, 1\}$ and the eigenvector(s) are

$$\{-2, \{-3, 1, 2\}\}$$
 $\{1, \{-1, 1, 1\}\}$

(d) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

$$\{3, \{2, 0, 1\}\}$$
 $\{3, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

$$\{2, \{-1, 0, 2\}\}$$

Click Here to Go Back To Questions

[98] Answers for Set No: XCVIII

(a) The eigenvalues are $\{3, 1, 0\}$ and the eigenvector(s) are

 $\{3,\{1,1,2\}\} \quad \{1,\{1,2,3\}\} \quad \{0,\{1,1,1\}\}$

(b) The eigenvalues are $\{2, 1, 1\}$ and the eigenvector(s) are

$$\{2, \{-1, 0, 2\}\} \quad \{1, \{0, 0, 1\}\} \quad \{1, \{-2, 1, 0\}\}$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$\{3, \{-1, 0, 1\}\}$$
 $\{-2, \{-3, -1, 2\}\}$

(d) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

$$\{3, \{1, 0, 2\}\}$$
 $\{3, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

 $\{3, \{1, 0, 1\}\}$

[99] Answers for Set No: XCIX

(a) The eigenvalues are $\{4, 1, 0\}$ and the eigenvector(s) are

$$\{4, \{1, -2, 2\}\}$$
 $\{1, \{1, -2, 3\}\}$ $\{0, \{1, -1, 2\}\}$

(b) The eigenvalues are $\{-2, 2, 2\}$ and the eigenvector(s) are

$$\{-2, \{1, 0, 1\}\} \quad \{2, \{0, 0, 1\}\} \quad \{2, \{1, 1, 0\}\}$$

(c) The eigenvalues are $\{-1, 1, 1\}$ and the eigenvector(s) are

$$\{-1, \{2, 1, 2\}\} \quad \{1, \{1, 1, 2\}\}$$

(d) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$\{-3, \{-1, 0, 1\}\}$$
 $\{-3, \{-1, 1, 0\}\}$

(e) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

 $\{3,\{1,0,1\}\}$

Click Here to Go Back To Questions

[100] Answers for Set No: C

(a) The eigenvalues are $\{3, 2, 1\}$ and the eigenvector(s) are

 $\{3,\{-2,0,1\}\} \quad \{2,\{-3,-1,2\}\} \quad \{1,\{-2,-1,1\}\}$

(b) The eigenvalues are $\{2, 2, 0\}$ and the eigenvector(s) are

$$\{2, \{1, 0, 2\}\}$$
 $\{2, \{1, 2, 0\}\}$ $\{0, \{0, -2, 1\}\}$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$\{-1, \{1, 0, 0\}\}$$
 $\{0, \{2, 2, 1\}\}$

(d) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{-2, 0, 1\}\}$$
 $\{-2, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

 $\{-3, \{-1, 2, 0\}\}$

[101] Answers for Set No: CI

(a) The eigenvalues are $\{6, 3, 1\}$ and the eigenvector(s) are

$$\{6, \{-1, 1, 0\}\}$$
 $\{3, \{-1, 0, 1\}\}$ $\{1, \{-2, -1, 2\}\}$

(b) The eigenvalues are $\{2, 2, 1\}$ and the eigenvector(s) are

$$\{2, \{0, 0, 1\}\} \quad \{2, \{-1, 1, 0\}\} \quad \{1, \{1, 0, 1\}\}$$

(c) The eigenvalues are $\{2, 1, 1\}$ and the eigenvector(s) are

$$\{2, \{-1, 1, 0\}\}$$
 $\{1, \{1, 0, 1\}\}$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$\{-2, \{-1, 0, 1\}\}$$
 $\{-2, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{-1, -1, 1\}\}$$

Click Here to Go Back To Questions

[102] Answers for Set No: CII

(a) The eigenvalues are $\{3, 2, 1\}$ and the eigenvector(s) are

$$\{3,\{-1,1,2\}\} \quad \{2,\{-3,2,6\}\} \quad \{1,\{-1,0,1\}\}$$

(b) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3, \{-1, 0, 3\}\} \quad \{3, \{4, 3, 0\}\} \quad \{2, \{1, 1, 0\}\}$$

(c) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3, \{-1, -1, 1\}\}$$
 $\{2, \{1, 1, 0\}\}$

(d) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{0, 0, 1\}\}$$
 $\{-2, \{-1, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2, \{-1, 1, 0\}\}$

[103] Answers for Set No: CIII

(a) The eigenvalues are $\{3, -2, 0\}$ and the eigenvector(s) are

$$\{3, \{0, -1, 1\}\}$$
 $\{-2, \{-1, -3, 1\}\}$ $\{0, \{-1, -3, 2\}\}$

(b) The eigenvalues are $\{3, 3, 1\}$ and the eigenvector(s) are

$$\{3, \{0, -1, 1\}\} \quad \{3, \{1, 0, 0\}\} \quad \{1, \{1, 0, 1\}\}\$$

(c) The eigenvalues are $\{3, 2, 2\}$ and the eigenvector(s) are

$$\{3,\{1,0,1\}\}$$
 $\{2,\{1,-1,3\}\}$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 1, 1\}\}$$
 $\{-1, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2, \{2, 1, 1\}\}$

Click Here to Go Back To Questions

[104] Answers for Set No: CIV

(a) The eigenvalues are $\{4, 1, 0\}$ and the eigenvector(s) are

 $\{4,\{-1,1,0\}\} \quad \{1,\{-1,0,1\}\} \quad \{0,\{-2,-1,2\}\}$

(b) The eigenvalues are $\{3, 3, 1\}$ and the eigenvector(s) are

$$\{3,\{-1,0,1\}\} \quad \{3,\{0,1,0\}\} \quad \{1,\{-1,-1,2\}\}$$

(c) The eigenvalues are $\{2, 2, -1\}$ and the eigenvector(s) are

$$\{2, \{1, 1, 0\}\}$$
 $\{-1, \{-2, -1, 2\}\}$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 0, 1\}\}$$
 $\{-1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2, \{2, 1, 2\}\}$

[105] Answers for Set No: CV

(a) The eigenvalues are $\{4, 3, -2\}$ and the eigenvector(s) are

$$\{4, \{-1, 1, 1\}\}$$
 $\{3, \{-2, 2, 1\}\}$ $\{-2, \{0, 1, 0\}\}$

(b) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3, \{0, 0, 1\}\} \quad \{3, \{-1, 2, 0\}\} \quad \{2, \{-1, 1, 2\}\}$$

(c) The eigenvalues are $\{-2, -2, 1\}$ and the eigenvector(s) are

$$\{-2, \{-3, 1, 2\}\}$$
 $\{1, \{-1, 1, 1\}\}$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 0, 1\}\} \{-1, \{2, 1, 0\}\}$$

(e) The eigenvalues are $\{-1, -1, -1\}$ and the eigenvector(s) are

 $\{-1, \{1, 0, 1\}\}$

Click Here to Go Back To Questions

[106] Answers for Set No: CVI

(a) The eigenvalues are $\{4, 2, 0\}$ and the eigenvector(s) are

 $\{4, \{0, -1, 1\}\} \quad \{2, \{-1, -3, 3\}\} \quad \{0, \{-1, -1, 2\}\}$

(b) The eigenvalues are $\{-3, -3, -1\}$ and the eigenvector(s) are

$$\{-3, \{0, -1, 1\}\} \quad \{-3, \{1, 0, 0\}\} \quad \{-1, \{2, 0, 1\}\}$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$\{3, \{-1, 0, 1\}\}$$
 $\{-2, \{-3, -1, 2\}\}$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 1, 2\}\}$$
 $\{-1, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

 $\{1, \{0, 0, 1\}\}$

[107] Answers for Set No: CVII

(a) The eigenvalues are $\{-2, 1, 0\}$ and the eigenvector(s) are

$$\{-2, \{1, -3, 1\}\} \quad \{1, \{0, -1, 1\}\} \quad \{0, \{1, -2, 1\}\}$$

(b) The eigenvalues are $\{-3, -2, -2\}$ and the eigenvector(s) are

$$\{-3, \{-1, 1, 1\}\} \quad \{-2, \{-3, 0, 2\}\} \quad \{-2, \{0, 1, 0\}\}$$

(c) The eigenvalues are $\{-1, 1, 1\}$ and the eigenvector(s) are

$$\{-1, \{2, 1, 2\}\} \quad \{1, \{1, 1, 2\}\}$$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{0, 0, 1\}\}$$
 $\{1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

$$\{2, \{-1, 0, 2\}\}$$

Click Here to Go Back To Questions

[108] Answers for Set No: CVIII

(a) The eigenvalues are $\{3, 1, 0\}$ and the eigenvector(s) are

 $\{3,\{-2,-2,1\}\} \quad \{1,\{-2,-1,2\}\} \quad \{0,\{-1,0,1\}\}$

(b) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$\{3,\{-1,-1,1\}\} \quad \{-2,\{-1,0,1\}\} \quad \{-2,\{1,1,0\}\}$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$\{-1, \{1, 0, 0\}\}$$
 $\{0, \{2, 2, 1\}\}$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{2, 0, 1\}\}$$
 $\{1, \{0, 1, 0\}\}$

(e) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

 $\{2, \{-1, 0, 2\}\}$

[109] Answers for Set No: CIX

(a) The eigenvalues are $\{-2, -1, 0\}$ and the eigenvector(s) are

$$\{-2, \{-1, 1, 1\}\} \quad \{-1, \{-1, 1, 0\}\} \quad \{0, \{-1, 0, 2\}\}$$

(b) The eigenvalues are $\{-3, -3, -1\}$ and the eigenvector(s) are

$$\{-3, \{1, 0, 1\}\} \quad \{-3, \{0, 1, 0\}\} \quad \{-1, \{2, 1, 1\}\}$$

(c) The eigenvalues are $\{2, 1, 1\}$ and the eigenvector(s) are

$$\{2, \{-1, 1, 0\}\}$$
 $\{1, \{1, 0, 1\}\}$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{0, 0, 1\}\}$$
 $\{1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

 $\{3,\{1,0,1\}\}$

Click Here to Go Back To Questions

[110] Answers for Set No: CX

(a) The eigenvalues are $\{3, -2, 1\}$ and the eigenvector(s) are

 $\{3, \{1, 0, 1\}\}$ $\{-2, \{-1, 1, 1\}\}$ $\{1, \{2, -1, 1\}\}$

(b) The eigenvalues are $\{-3, -1, -1\}$ and the eigenvector(s) are

$$\{-3, \{2, 1, 1\}\} \quad \{-1, \{1, 0, 1\}\} \quad \{-1, \{0, 1, 0\}\}$$

(c) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3,\{-1,-1,1\}\} \quad \{2,\{1,1,0\}\}$$

(d) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

$$\{2, \{0, -1, 2\}\}$$
 $\{2, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

 $\{3, \{1, 0, 1\}\}$

[111] Answers for Set No: CXI

(a) The eigenvalues are $\{3, 2, -1\}$ and the eigenvector(s) are

$$\{3,\{0,-1,1\}\} \quad \{2,\{-1,-3,3\}\} \quad \{-1,\{-1,-1,2\}\}$$

(b) The eigenvalues are $\{-2, -2, -1\}$ and the eigenvector(s) are

$$\{-2, \{1, 0, 1\}\} \quad \{-2, \{-1, 2, 0\}\} \quad \{-1, \{2, -3, 1\}\}$$

(c) The eigenvalues are $\{3, 2, 2\}$ and the eigenvector(s) are

$$\{3,\{1,0,1\}\}$$
 $\{2,\{1,-1,3\}\}$

(d) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

$$\{3, \{2, 0, 1\}\}$$
 $\{3, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{-3, -3, -3\}$ and the eigenvector(s) are

$$\{-3, \{-1, 2, 0\}\}$$

Click Here to Go Back To Questions

[112] Answers for Set No: CXII

(a) The eigenvalues are $\{3, 2, -1\}$ and the eigenvector(s) are

 $\{3,\{3,-2,3\}\} \quad \{2,\{3,-2,2\}\} \quad \{-1,\{-1,1,0\}\}$

(b) The eigenvalues are $\{-2, -1, -1\}$ and the eigenvector(s) are

$$\{-2, \{3, 1, 0\}\} \quad \{-1, \{0, 0, 1\}\} \quad \{-1, \{2, 1, 0\}\}$$

(c) The eigenvalues are $\{2, 2, -1\}$ and the eigenvector(s) are

$$\{2, \{1, 1, 0\}\}$$
 $\{-1, \{-2, -1, 2\}\}$

(d) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

$$\{3, \{1, 0, 2\}\}$$
 $\{3, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2, \{-1, -1, 1\}\}$

[113] Answers for Set No: CXIII

(a) The eigenvalues are $\{3, 1, 0\}$ and the eigenvector(s) are

$$\{3, \{-2, 0, 1\}\} \quad \{1, \{-3, -1, 2\}\} \quad \{0, \{-2, -1, 1\}\}$$

(b) The eigenvalues are $\{3, -1, -1\}$ and the eigenvector(s) are

$$\{3,\{1,0,1\}\} \quad \{-1,\{1,0,2\}\} \quad \{-1,\{1,1,0\}\}$$

(c) The eigenvalues are $\{-2, -2, 1\}$ and the eigenvector(s) are

$$\{-2, \{-3, 1, 2\}\} \quad \{1, \{-1, 1, 1\}\}$$

(d) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$\{-3, \{-1, 0, 1\}\}$$
 $\{-3, \{-1, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{-1, 1, 0\}\}$$

Click Here to Go Back To Questions

[114] Answers for Set No: CXIV

(a) The eigenvalues are $\{2, 1, 0\}$ and the eigenvector(s) are

 $\{2,\{1,2,1\}\} \quad \{1,\{1,3,1\}\} \quad \{0,\{0,1,1\}\}$

(b) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$\{-1, \{-3, 0, 1\}\} \quad \{-1, \{1, 1, 0\}\} \quad \{0, \{-1, 1, 1\}\}$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$\{3, \{-1, 0, 1\}\}$$
 $\{-2, \{-3, -1, 2\}\}$

(d) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{-2, 0, 1\}\}$$
 $\{-2, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2, \{2, 1, 1\}\}$

[115] Answers for Set No: CXV

(a) The eigenvalues are $\{-3, 1, 0\}$ and the eigenvector(s) are

$$\{-3, \{1, 0, 1\}\} \quad \{1, \{3, -1, 1\}\} \quad \{0, \{2, -1, 1\}\}$$

(b) The eigenvalues are $\{-1, -1, 0\}$ and the eigenvector(s) are

$$\{-1, \{0, 3, 1\}\} \quad \{-1, \{1, 0, 0\}\} \quad \{0, \{2, 2, 1\}\}$$

(c) The eigenvalues are $\{-1, 1, 1\}$ and the eigenvector(s) are

$$\{-1, \{2, 1, 2\}\} \quad \{1, \{1, 1, 2\}\}$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$\{-2, \{-1, 0, 1\}\}$$
 $\{-2, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2,\{2,1,2\}\}$

Click Here to Go Back To Questions

[116] Answers for Set No: CXVI

(a) The eigenvalues are $\{6, 1, 0\}$ and the eigenvector(s) are

 $\{6, \{0, 1, 0\}\} \quad \{1, \{3, 6, 2\}\} \quad \{0, \{1, 2, 1\}\}$

(b) The eigenvalues are $\{1, 1, 0\}$ and the eigenvector(s) are

$$\{1, \{0, 0, 1\}\}$$
 $\{1, \{1, 1, 0\}\}$ $\{0, \{2, 1, 0\}\}$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$\{-1, \{1, 0, 0\}\}$$
 $\{0, \{2, 2, 1\}\}$

(d) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{0, 0, 1\}\}$$
 $\{-2, \{-1, 1, 0\}\}$

(e) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

 $\{-1, \{1, 0, 1\}\}$

[117] Answers for Set No: CXVII

(a) The eigenvalues are $\{3, 2, 1\}$ and the eigenvector(s) are

$$\{3, \{2, 3, 0\}\}$$
 $\{2, \{-2, -4, 1\}\}$ $\{1, \{-1, -3, 1\}\}$

(b) The eigenvalues are $\{-3, -3, 1\}$ and the eigenvector(s) are

$$\{-3, \{0, 1, 1\}\} \quad \{-3, \{1, 0, 0\}\} \quad \{1, \{-2, 1, 0\}\}$$

(c) The eigenvalues are $\{2, 1, 1\}$ and the eigenvector(s) are

$$\{2, \{-1, 1, 0\}\}$$
 $\{1, \{1, 0, 1\}\}$

(d) The eigenvalues are $\{-1, -1, -1\}$ and the eigenvector(s) are

$$\{-1, \{0, 1, 1\}\}$$
 $\{-1, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

 $\{1,\{0,0,1\}\}$

Click Here to Go Back To Questions

[118] Answers for Set No: CXVIII

(a) The eigenvalues are $\{-2, 1, 0\}$ and the eigenvector(s) are

$$\{-2, \{-1, 1, 2\}\} \quad \{1, \{-1, 0, 1\}\} \quad \{0, \{-1, 1, 1\}\}$$

(b) The eigenvalues are $\{1, 1, 0\}$ and the eigenvector(s) are

$$\{1, \{0, -1, 2\}\} \quad \{1, \{1, 0, 0\}\} \quad \{0, \{-3, -1, 1\}\}$$

(c) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3,\{-1,-1,1\}\} \quad \{2,\{1,1,0\}\}$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 0, 1\}\}$$
 $\{-1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

 $\{2, \{-1, 0, 2\}\}$

[119] Answers for Set No: CXIX

(a) The eigenvalues are $\{3, 2, 0\}$ and the eigenvector(s) are

$$\{3, \{1, 2, 2\}\}$$
 $\{2, \{2, 3, 4\}\}$ $\{0, \{0, 1, 1\}\}$

(b) The eigenvalues are $\{2, 1, 1\}$ and the eigenvector(s) are

$$\{2, \{-1, 0, 2\}\} \quad \{1, \{0, 0, 1\}\} \quad \{1, \{-2, 1, 0\}\}$$

(c) The eigenvalues are $\{3, 2, 2\}$ and the eigenvector(s) are

$$\{3,\{1,0,1\}\}$$
 $\{2,\{1,-1,3\}\}$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 0, 1\}\}$$
 $\{-1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

$$\{2, \{-1, 0, 2\}\}$$

Click Here to Go Back To Questions

[120] Answers for Set No: CXX

(a) The eigenvalues are $\{-3,2,1\}$ and the eigenvector(s) are

$$\{-3, \{-1, 0, 1\}\} \quad \{2, \{-2, -2, 1\}\} \quad \{1, \{-2, -1, 1\}\}$$

(b) The eigenvalues are $\{-2,2,2\}$ and the eigenvector(s) are

$$\{-2, \{1, 0, 1\}\} \quad \{2, \{0, 0, 1\}\} \quad \{2, \{1, 1, 0\}\}$$

(c) The eigenvalues are $\{2,2,-1\}$ and the eigenvector(s) are

$$\{2, \{1, 1, 0\}\}$$
 $\{-1, \{-2, -1, 2\}\}$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 1, 2\}\}$$
 $\{-1, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

 $\{3, \{1, 0, 1\}\}$

[121] Answers for Set No: CXXI

(a) The eigenvalues are $\{5, 1, 0\}$ and the eigenvector(s) are

$$\{5, \{-1, 1, 1\}\}$$
 $\{1, \{-2, 3, 1\}\}$ $\{0, \{-1, 1, 0\}\}$

(b) The eigenvalues are $\{2, 2, 0\}$ and the eigenvector(s) are

$$\{2, \{1, 0, 2\}\} \quad \{2, \{1, 2, 0\}\} \quad \{0, \{0, -2, 1\}\}$$

(c) The eigenvalues are $\{-2,-2,1\}$ and the eigenvector (s) are

$$\{-2, \{-3, 1, 2\}\}$$
 $\{1, \{-1, 1, 1\}\}$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{0, 0, 1\}\}$$
 $\{1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

 $\{3,\{1,0,1\}\}$

Click Here to Go Back To Questions

[122] Answers for Set No: CXXII

(a) The eigenvalues are $\{-3, 2, 1\}$ and the eigenvector(s) are

$$\{-3, \{-1, 1, 0\}\} \quad \{2, \{3, -2, 3\}\} \quad \{1, \{3, -2, 2\}\}$$

(b) The eigenvalues are $\{2, 2, 1\}$ and the eigenvector(s) are

$$\{2, \{0, 0, 1\}\} \quad \{2, \{-1, 1, 0\}\} \quad \{1, \{1, 0, 1\}\}$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$\{3, \{-1, 0, 1\}\}$$
 $\{-2, \{-3, -1, 2\}\}$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{2, 0, 1\}\}$$
 $\{1, \{0, 1, 0\}\}$

(e) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

 $\{-3, \{-1, 2, 0\}\}$

[123] Answers for Set No: CXXIII

(a) The eigenvalues are $\{4, -3, 0\}$ and the eigenvector(s) are

$$\{4, \{-1, -1, 1\}\} \quad \{-3, \{1, 1, 0\}\} \quad \{0, \{0, -1, 1\}\}$$

(b) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3,\{-1,0,3\}\} \quad \{3,\{4,3,0\}\} \quad \{2,\{1,1,0\}\}$$

(c) The eigenvalues are $\{-1, 1, 1\}$ and the eigenvector(s) are

$$\{-1, \{2, 1, 2\}\} \quad \{1, \{1, 1, 2\}\}$$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{0, 0, 1\}\}$$
 $\{1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{-1, -1, 1\}\}$$

Click Here to Go Back To Questions

[124] Answers for Set No: CXXIV

(a) The eigenvalues are $\{6, 2, 1\}$ and the eigenvector(s) are

$$\{6, \{-1, 1, 0\}\}$$
 $\{2, \{-1, 0, 1\}\}$ $\{1, \{-2, -1, 2\}\}$

(b) The eigenvalues are $\{3, 3, 1\}$ and the eigenvector(s) are

$$\{3, \{0, -1, 1\}\} \quad \{3, \{1, 0, 0\}\} \quad \{1, \{1, 0, 1\}\}$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$\{-1, \{1, 0, 0\}\}$$
 $\{0, \{2, 2, 1\}\}$

(d) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

$$\{2, \{0, -1, 2\}\}$$
 $\{2, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2, \{-1, 1, 0\}\}$

[125] Answers for Set No: CXXV

(a) The eigenvalues are $\{3, 2, 0\}$ and the eigenvector(s) are

$$\{3, \{-2, 2, 1\}\}$$
 $\{2, \{-1, 1, 1\}\}$ $\{0, \{0, 1, 0\}\}$

(b) The eigenvalues are $\{3, 3, 1\}$ and the eigenvector(s) are

$$\{3, \{-1, 0, 1\}\} \quad \{3, \{0, 1, 0\}\} \quad \{1, \{-1, -1, 2\}\}$$

(c) The eigenvalues are $\{2, 1, 1\}$ and the eigenvector(s) are

$$\{2, \{-1, 1, 0\}\}$$
 $\{1, \{1, 0, 1\}\}$

(d) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

$$\{3, \{2, 0, 1\}\}$$
 $\{3, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2,\{2,1,1\}\}$

Click Here to Go Back To Questions

[126] Answers for Set No: CXXVI

(a) The eigenvalues are $\{3, 2, -1\}$ and the eigenvector(s) are

 $\{3, \{-2, 1, 1\}\}$ $\{2, \{-1, 1, 1\}\}$ $\{-1, \{0, 1, 0\}\}$

(b) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3, \{0, 0, 1\}\} \quad \{3, \{-1, 2, 0\}\} \quad \{2, \{-1, 1, 2\}\}$$

(c) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3,\{-1,-1,1\}\} \quad \{2,\{1,1,0\}\}$$

(d) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

$$\{3, \{1, 0, 2\}\}$$
 $\{3, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2, \{2, 1, 2\}\}$

[127] Answers for Set No: CXXVII

(a) The eigenvalues are $\{-7,-2,1\}$ and the eigenvector(s) are

$$\{-7, \{0, 1, 0\}\} \quad \{-2, \{-1, 2, 1\}\} \quad \{1, \{-2, 2, 1\}\}$$

(b) The eigenvalues are $\{-3, -3, -1\}$ and the eigenvector(s) are

$$\{-3, \{0, -1, 1\}\} \quad \{-3, \{1, 0, 0\}\} \quad \{-1, \{2, 0, 1\}\}$$

(c) The eigenvalues are $\{3, 2, 2\}$ and the eigenvector(s) are

$$\{3, \{1, 0, 1\}\}$$
 $\{2, \{1, -1, 3\}\}$

(d) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$\{-3, \{-1, 0, 1\}\}$$
 $\{-3, \{-1, 1, 0\}\}$

(e) The eigenvalues are $\{-1, -1, -1\}$ and the eigenvector(s) are

 $\{-1,\{1,0,1\}\}$

Click Here to Go Back To Questions

[128] Answers for Set No: CXXVIII

(a) The eigenvalues are $\{2, 1, 0\}$ and the eigenvector(s) are

 $\{2, \{0, 1, 0\}\} \quad \{1, \{-2, 3, 1\}\} \quad \{0, \{-3, 4, 2\}\}$

(b) The eigenvalues are $\{-3, -2, -2\}$ and the eigenvector(s) are

$$\{-3,\{-1,1,1\}\} \quad \{-2,\{-3,0,2\}\} \quad \{-2,\{0,1,0\}\}$$

(c) The eigenvalues are $\{2, 2, -1\}$ and the eigenvector(s) are

$$\{2, \{1, 1, 0\}\}$$
 $\{-1, \{-2, -1, 2\}\}$

(d) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{-2, 0, 1\}\}$$
 $\{-2, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

 $\{1, \{0, 0, 1\}\}$

[129] Answers for Set No: CXXIX

(a) The eigenvalues are $\{6, 1, 0\}$ and the eigenvector(s) are

$$\{6, \{0, 1, 0\}\} \quad \{1, \{-2, 3, 1\}\} \quad \{0, \{-3, 4, 2\}\}$$

(b) The eigenvalues are $\{3, -2, -2\}$ and the eigenvector(s) are

$$\{3, \{-1, -1, 1\}\} \quad \{-2, \{-1, 0, 1\}\} \quad \{-2, \{1, 1, 0\}\}\$$

(c) The eigenvalues are $\{-2, -2, 1\}$ and the eigenvector(s) are

$$\{-2, \{-3, 1, 2\}\}$$
 $\{1, \{-1, 1, 1\}\}$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$\{-2, \{-1, 0, 1\}\} \{-2, \{1, 1, 0\}\}$$

(e) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

$$\{2, \{-1, 0, 2\}\}$$

Click Here to Go Back To Questions

[130] Answers for Set No: CXXX

(a) The eigenvalues are $\{7, 1, 0\}$ and the eigenvector(s) are

 $\{7, \{0, 1, 0\}\} \quad \{1, \{-2, 3, 1\}\} \quad \{0, \{-3, 4, 2\}\}$

(b) The eigenvalues are $\{-3, -3, -1\}$ and the eigenvector(s) are

$$\{-3, \{1, 0, 1\}\} \quad \{-3, \{0, 1, 0\}\} \quad \{-1, \{2, 1, 1\}\}$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$\{3, \{-1, 0, 1\}\}$$
 $\{-2, \{-3, -1, 2\}\}$

(d) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{0, 0, 1\}\}$$
 $\{-2, \{-1, 1, 0\}\}$

(e) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

 $\{2, \{-1, 0, 2\}\}$

[131] Answers for Set No: CXXXI

(a) The eigenvalues are $\{3, -2, -1\}$ and the eigenvector(s) are

$$\{3, \{-1, 0, 1\}\} \quad \{-2, \{-1, 1, 2\}\} \quad \{-1, \{-1, 1, 1\}\}$$

(b) The eigenvalues are $\{-3, -1, -1\}$ and the eigenvector(s) are

$$\{-3, \{2, 1, 1\}\} \quad \{-1, \{1, 0, 1\}\} \quad \{-1, \{0, 1, 0\}\}$$

(c) The eigenvalues are $\{-1, 1, 1\}$ and the eigenvector(s) are

$$\{-1, \{2, 1, 2\}\} \quad \{1, \{1, 1, 2\}\}$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 1, 1\}\}$$
 $\{-1, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

 $\{3,\{1,0,1\}\}$

Click Here to Go Back To Questions

[132] Answers for Set No: CXXXII

(a) The eigenvalues are $\{3, 2, -1\}$ and the eigenvector(s) are

 $\{3, \{-2, 1, 1\}\}$ $\{2, \{-1, 1, 1\}\}$ $\{-1, \{-1, 1, 0\}\}$

(b) The eigenvalues are $\{-2, -2, -1\}$ and the eigenvector(s) are

$$\{-2,\{1,0,1\}\} \quad \{-2,\{-1,2,0\}\} \quad \{-1,\{2,-3,1\}\}$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$\{-1, \{1, 0, 0\}\}$$
 $\{0, \{2, 2, 1\}\}$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 0, 1\}\}$$
 $\{-1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

 $\{3, \{1, 0, 1\}\}$

[133] Answers for Set No: CXXXIII

(a) The eigenvalues are $\{4, 1, 0\}$ and the eigenvector(s) are

$$\{4, \{-2, 0, 1\}\} \quad \{1, \{-3, -1, 2\}\} \quad \{0, \{-2, -1, 1\}\}$$

(b) The eigenvalues are $\{-2, -1, -1\}$ and the eigenvector(s) are

$$\{-2, \{3, 1, 0\}\} \quad \{-1, \{0, 0, 1\}\} \quad \{-1, \{2, 1, 0\}\}$$

(c) The eigenvalues are $\{2, 1, 1\}$ and the eigenvector(s) are

$$\{2, \{-1, 1, 0\}\}$$
 $\{1, \{1, 0, 1\}\}$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 0, 1\}\}$$
 $\{-1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{-3, -3, -3\}$ and the eigenvector(s) are

$$\{-3, \{-1, 2, 0\}\}$$

Click Here to Go Back To Questions

[134] Answers for Set No: CXXXIV

(a) The eigenvalues are $\{5, -2, 1\}$ and the eigenvector(s) are

$$\{5, \{-1, -1, 1\}\} \quad \{-2, \{1, 1, 0\}\} \quad \{1, \{0, -1, 1\}\}$$

(b) The eigenvalues are $\{3,-1,-1\}$ and the eigenvector(s) are

$$\{3,\{1,0,1\}\} \quad \{-1,\{1,0,2\}\} \quad \{-1,\{1,1,0\}\}$$

(c) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3, \{-1, -1, 1\}\}$$
 $\{2, \{1, 1, 0\}\}$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 1, 2\}\}$$
 $\{-1, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{-1, -1, 1\}\}$$

[135] Answers for Set No: CXXXV

(a) The eigenvalues are $\{5, 2, -1\}$ and the eigenvector(s) are

$$\{5, \{-1, -1, 1\}\}$$
 $\{2, \{0, -1, 1\}\}$ $\{-1, \{1, 1, 0\}\}$

(b) The eigenvalues are $\{-1, -1, 0\}$ and the eigenvector(s) are

$$\{-1, \{-3, 0, 1\}\} \quad \{-1, \{1, 1, 0\}\} \quad \{0, \{-1, 1, 1\}\}$$

(c) The eigenvalues are $\{3, 2, 2\}$ and the eigenvector(s) are

$$\{3,\{1,0,1\}\}$$
 $\{2,\{1,-1,3\}\}$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{0, 0, 1\}\}$$
 $\{1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{-1, 1, 0\}\}$$

Click Here to Go Back To Questions

[136] Answers for Set No: CXXXVI

(a) The eigenvalues are $\{3, 2, 0\}$ and the eigenvector(s) are

$$\{3, \{-3, -1, 1\}\} \quad \{2, \{1, 1, 0\}\} \quad \{0, \{0, 1, 1\}\}$$

(b) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$\{-1, \{0, 3, 1\}\} \quad \{-1, \{1, 0, 0\}\} \quad \{0, \{2, 2, 1\}\}$$

(c) The eigenvalues are $\{2, 2, -1\}$ and the eigenvector(s) are

$$\{2,\{1,1,0\}\} \quad \{-1,\{-2,-1,2\}\}$$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{2, 0, 1\}\}$$
 $\{1, \{0, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2, \{2, 1, 1\}\}$

[137] Answers for Set No: CXXXVII

(a) The eigenvalues are $\{3, 2, -1\}$ and the eigenvector(s) are

$$\{3, \{3, -1, 1\}\}$$
 $\{2, \{2, -1, 1\}\}$ $\{-1, \{1, 0, 1\}\}$

(b) The eigenvalues are $\{1, 1, 0\}$ and the eigenvector(s) are

$$\{1, \{0, 0, 1\}\} \quad \{1, \{1, 1, 0\}\} \quad \{0, \{2, 1, 0\}\}\$$

(c) The eigenvalues are $\{-2, -2, 1\}$ and the eigenvector(s) are

$$\{-2, \{-3, 1, 2\}\}$$
 $\{1, \{-1, 1, 1\}\}$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{0, 0, 1\}\}$$
 $\{1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2,\{2,1,2\}\}$

Click Here to Go Back To Questions

[138] Answers for Set No: CXXXVIII

(a) The eigenvalues are $\{3, 1, 0\}$ and the eigenvector(s) are

 $\{3,\{-2,1,1\}\} \quad \{1,\{-1,1,1\}\} \quad \{0,\{0,1,0\}\}$

(b) The eigenvalues are $\{-3,-3,1\}$ and the eigenvector(s) are

$$\{-3, \{0, 1, 1\}\} \quad \{-3, \{1, 0, 0\}\} \quad \{1, \{-2, 1, 0\}\}$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$\{3, \{-1, 0, 1\}\}$$
 $\{-2, \{-3, -1, 2\}\}$

(d) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

$$\{2, \{0, -1, 2\}\}$$
 $\{2, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

 $\{-1, \{1, 0, 1\}\}$

[139] Answers for Set No: CXXXIX

(a) The eigenvalues are $\{-7, 2, -1\}$ and the eigenvector(s) are

 $\{-7, \{0, 1, 0\}\}$ $\{2, \{-2, 2, 1\}\}$ $\{-1, \{-1, 2, 1\}\}$

(b) The eigenvalues are $\{1, 1, 0\}$ and the eigenvector(s) are

$$\{1, \{0, -1, 2\}\} \quad \{1, \{1, 0, 0\}\} \quad \{0, \{-3, -1, 1\}\}$$

(c) The eigenvalues are $\{-1, 1, 1\}$ and the eigenvector(s) are

$$\{-1, \{2, 1, 2\}\} \quad \{1, \{1, 1, 2\}\}$$

(d) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

$$\{3, \{2, 0, 1\}\}$$
 $\{3, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

 $\{1,\{0,0,1\}\}$

Click Here to Go Back To Questions

[140] Answers for Set No: CXL

(a) The eigenvalues are $\{-3, 2, -1\}$ and the eigenvector(s) are

 $\{-3,\{0,1,0\}\} \quad \{2,\{-2,1,1\}\} \quad \{-1,\{-1,1,1\}\}$

(b) The eigenvalues are $\{2, 1, 1\}$ and the eigenvector(s) are

$$\{2, \{-1, 0, 2\}\} \quad \{1, \{0, 0, 1\}\} \quad \{1, \{-2, 1, 0\}\}$$

(c) The eigenvalues are $\{-1, -1, 0\}$ and the eigenvector(s) are

$$\{-1, \{1, 0, 0\}\}$$
 $\{0, \{2, 2, 1\}\}$

(d) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

$$\{3, \{1, 0, 2\}\}$$
 $\{3, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

 $\{2, \{-1, 0, 2\}\}$

[141] Answers for Set No: CXLI

(a) The eigenvalues are $\{3, 2, 0\}$ and the eigenvector(s) are

$$\{3, \{-1, 0, 1\}\}$$
 $\{2, \{-1, 1, 1\}\}$ $\{0, \{-1, 1, 2\}\}$

(b) The eigenvalues are $\{-2,2,2\}$ and the eigenvector(s) are

$$\{-2, \{1, 0, 1\}\} \quad \{2, \{0, 0, 1\}\} \quad \{2, \{1, 1, 0\}\}$$

(c) The eigenvalues are $\{2, 1, 1\}$ and the eigenvector(s) are

$$\{2, \{-1, 1, 0\}\}$$
 $\{1, \{1, 0, 1\}\}$

(d) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$\{-3, \{-1, 0, 1\}\}$$
 $\{-3, \{-1, 1, 0\}\}$

(e) The eigenvalues are $\{2, 2, 2\}$ and the eigenvector(s) are

$$\{2, \{-1, 0, 2\}\}$$

Click Here to Go Back To Questions

[142] Answers for Set No: CXLII

(a) The eigenvalues are $\{2, 1, 0\}$ and the eigenvector(s) are

$$\{2, \{4, -3, 1\}\} \quad \{1, \{5, -4, 2\}\} \quad \{0, \{2, -2, 1\}\}$$

(b) The eigenvalues are $\{2, 2, 0\}$ and the eigenvector(s) are

$$\{2, \{1, 0, 2\}\} \quad \{2, \{1, 2, 0\}\} \quad \{0, \{0, -2, 1\}\}$$

(c) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3, \{-1, -1, 1\}\}$$
 $\{2, \{1, 1, 0\}\}$

(d) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{-2, 0, 1\}\}$$
 $\{-2, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

 $\{3, \{1, 0, 1\}\}$

[143] Answers for Set No: CXLIII

(a) The eigenvalues are $\{3, 1, 0\}$ and the eigenvector(s) are

$$\{3, \{1, -1, 1\}\}$$
 $\{1, \{1, -2, 1\}\}$ $\{0, \{2, -5, 3\}\}$

(b) The eigenvalues are $\{2, 2, 1\}$ and the eigenvector(s) are

$$\{2, \{0, 0, 1\}\} \quad \{2, \{-1, 1, 0\}\} \quad \{1, \{1, 0, 1\}\}$$

(c) The eigenvalues are $\{3, 2, 2\}$ and the eigenvector(s) are

$$\{3,\{1,0,1\}\}$$
 $\{2,\{1,-1,3\}\}$

(d) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{-1, 0, 1\}\}$$
 $\{-2, \{1, 1, 0\}\}$

(e) The eigenvalues are $\{3, 3, 3\}$ and the eigenvector(s) are

 $\{3,\{1,0,1\}\}$

Click Here to Go Back To Questions

[144] Answers for Set No: CXLIV

(a) The eigenvalues are $\{3, 1, 0\}$ and the eigenvector(s) are

 $\{3,\{-1,1,0\}\} \quad \{1,\{1,-4,2\}\} \quad \{0,\{0,-1,1\}\}$

(b) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3, \{-1, 0, 3\}\} \quad \{3, \{4, 3, 0\}\} \quad \{2, \{1, 1, 0\}\}$$

(c) The eigenvalues are $\{2, 2, -1\}$ and the eigenvector(s) are

$$\{2, \{1, 1, 0\}\}$$
 $\{-1, \{-2, -1, 2\}\}$

(d) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{0, 0, 1\}\}$$
 $\{-2, \{-1, 1, 0\}\}$

(e) The eigenvalues are $\{-3, -3, -3\}$ and the eigenvector(s) are

 $\{-3, \{-1, 2, 0\}\}$

[145] Answers for Set No: CXLV

(a) The eigenvalues are $\{2, 1, 0\}$ and the eigenvector(s) are

$$\{2, \{2, 1, 1\}\}$$
 $\{1, \{3, 2, 1\}\}$ $\{0, \{5, 4, 2\}\}$

(b) The eigenvalues are $\{3, 3, 1\}$ and the eigenvector(s) are

$$\{3, \{0, -1, 1\}\} \quad \{3, \{1, 0, 0\}\} \quad \{1, \{1, 0, 1\}\}$$

(c) The eigenvalues are $\{-2, -2, 1\}$ and the eigenvector(s) are

$$\{-2, \{-3, 1, 2\}\}$$
 $\{1, \{-1, 1, 1\}\}$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 1, 1\}\}$$
 $\{-1, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

$$\{-2, \{-1, -1, 1\}\}$$

Click Here to Go Back To Questions

[146] Answers for Set No: CXLVI

(a) The eigenvalues are $\{2, -1, 0\}$ and the eigenvector(s) are

$$\{2, \{3, 3, 2\}\} \quad \{-1, \{0, 1, 0\}\} \quad \{0, \{1, 1, 1\}\}$$

(b) The eigenvalues are $\{3, 3, 1\}$ and the eigenvector(s) are

$$\{3, \{-1, 0, 1\}\} \quad \{3, \{0, 1, 0\}\} \quad \{1, \{-1, -1, 2\}\}$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$\{3, \{-1, 0, 1\}\}$$
 $\{-2, \{-3, -1, 2\}\}$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 0, 1\}\}$$
 $\{-1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2, \{-1, 1, 0\}\}$

[147] Answers for Set No: CXLVII

(a) The eigenvalues are $\{4, 3, 1\}$ and the eigenvector(s) are

$$\{4, \{-1, -1, 2\}\}$$
 $\{3, \{-1, -3, 3\}\}$ $\{1, \{0, 1, 0\}\}$

(b) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3, \{0, 0, 1\}\} \quad \{3, \{-1, 2, 0\}\} \quad \{2, \{-1, 1, 2\}\}$$

(c) The eigenvalues are $\{-1, 1, 1\}$ and the eigenvector(s) are

$$\{-1, \{2, 1, 2\}\} \quad \{1, \{1, 1, 2\}\}$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 0, 1\}\}$$
 $\{-1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2,\{2,1,1\}\}$

Click Here to Go Back To Questions

[148] Answers for Set No: CXLVIII

(a) The eigenvalues are $\{3, 2, 0\}$ and the eigenvector(s) are

 $\{3, \{4, -2, 1\}\}$ $\{2, \{3, -2, 1\}\}$ $\{0, \{-1, 1, 0\}\}$

(b) The eigenvalues are $\{-3, -3, -1\}$ and the eigenvector(s) are

$$\{-3, \{0, -1, 1\}\} \quad \{-3, \{1, 0, 0\}\} \quad \{-1, \{2, 0, 1\}\}$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$\{-1, \{1, 0, 0\}\}$$
 $\{0, \{2, 2, 1\}\}$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$\{-1, \{0, 1, 2\}\}$$
 $\{-1, \{1, 0, 0\}\}$

(e) The eigenvalues are $\{-2, -2, -2\}$ and the eigenvector(s) are

 $\{-2, \{2, 1, 2\}\}$

[149] Answers for Set No: CXLIX

(a) The eigenvalues are $\{7, 1, 0\}$ and the eigenvector(s) are

$$\{7, \{-1, -1, 1\}\} \quad \{1, \{0, -1, 1\}\} \quad \{0, \{1, 1, 0\}\}$$

(b) The eigenvalues are $\{-3, -2, -2\}$ and the eigenvector(s) are

$$\{-3,\{-1,1,1\}\} \quad \{-2,\{-3,0,2\}\} \quad \{-2,\{0,1,0\}\}$$

(c) The eigenvalues are $\{2, 1, 1\}$ and the eigenvector(s) are

$$\{2, \{-1, 1, 0\}\}$$
 $\{1, \{1, 0, 1\}\}$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{0, 0, 1\}\}$$
 $\{1, \{2, 1, 0\}\}$

(e) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

 $\{-1, \{1, 0, 1\}\}$

Click Here to Go Back To Questions

[150] Answers for Set No: CL

(a) The eigenvalues are $\{3, -2, 1\}$ and the eigenvector(s) are

 $\{3, \{-3, -1, 1\}\}$ $\{-2, \{0, 1, 1\}\}$ $\{1, \{1, 1, 0\}\}$

(b) The eigenvalues are $\{3, -2, -2\}$ and the eigenvector(s) are

$$\{3,\{-1,-1,1\}\} \quad \{-2,\{-1,0,1\}\} \quad \{-2,\{1,1,0\}\}$$

(c) The eigenvalues are $\{3, 3, 2\}$ and the eigenvector(s) are

$$\{3, \{-1, -1, 1\}\}$$
 $\{2, \{1, 1, 0\}\}$

(d) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

$$\{1, \{2, 0, 1\}\}$$
 $\{1, \{0, 1, 0\}\}$

(e) The eigenvalues are $\{1, 1, 1\}$ and the eigenvector(s) are

 $\{1, \{0, 0, 1\}\}$