Solve $\int sin(x) cos^2(x) dx$

A sample content to illustrate how multi-step content type can be used.

The content created below is similar to the Wolfram|Alpha Step-By-Step $\int sin(x) cos^2(x) dx$.

Solve the following integral: \begin{equation*}I = \int sin(x) cos^2(x) dx\end{equation*}

ToHide: 

even

1. Transform the integrand by making the substitution $u = cos(x), du = -sin(x) dx$.

\begin{equation*}I = -\int u^2 du\end{equation*}

2. Use the formula for $\int x^n dx$

\begin{equation*} = - \frac{u^3}{3} + constant\end{equation*}

3. Substitute back $u$ in terms of $x$.

\begin{equation*} = -\frac{1}{3}cos^3(x)+constant\end{equation*}

Exclude node summary : 

n