Welcome Guest!

# Typing mathematical expressions

For page specific messages
For page specific messages

Mathematical expressions can be inserted within HTML text of all content types (e.g., page, book page, blog, forum) edited using the available online WYSIWYG HTML editor. The mathematical expressions must be typed using the syntax of TeX/LaTeX.

The easiest way to start is to author a page with some LaTeX code for mathematical expressions given here (based on the code snippets from an online cookbook).

[For a more comprehensive documentation of TeX syntax, see this document.]

To put mathematical expressions in a line (inline mode), or equations (paragraph mode), we can use single dollar character (\$) or double dollar characters (\$\$) respectively as delimiters to surround the mathematical expression within the HTML editor available for almost all content types (e.g., page, book page, blog, forum). Of course, the mathematical expressions must be typed using a special syntax (TeX/LaTeX). Easiest way to start is to author a page with some LaTeX code for mathematical expressions given below (code snippets from an online cookbook): [For a more comprehensive documentation of TeX syntax, see this document.] [To see the LaTeX code of any equation, right-click on it.] ### Inline mode with$

 $x=\frac{1+y}{1+2z^2}$ $$x=\frac{1+y}{1+2z^2}$$ $x=\frac{1+y}{1+2z^2}$ $x=\frac{1+y}{1+2z^2}\nonumber$ $\int_0^\infty e^{-x^2}dx=\frac{\sqrt{\pi}}{2}$ $$\int_0^\infty e^{-x^2} dx=\frac{\sqrt{\pi}}{2}$$ $\int_0^\infty e^{-x^2} dx=\frac{\sqrt{\pi}}{2}$ $\int_0^\infty e^{-x^2} dx=\frac{\sqrt{\pi}}{2}\nonumber$ $\displaystyle \int_0^\infty e^{-x^2} dx$ $$\displaystyle \int_0^\infty e^{-x^2} dx$$ $\frac{1}{\displaystyle 1+\frac{1}{\displaystyle 2+\frac{1}{\displaystyle 3+x}}}+\frac{1}{1+\frac{1}{2+\frac{1}{3+x}}}$ $\frac{1}{\displaystyle 1+ \frac{1}{\displaystyle 2+ \frac{1}{\displaystyle 3+x}}} + \frac{1}{1+\frac{1}{2+\frac{1}{3+x}}}\nonumber$

### Spaces and text in math

Horizontal spacing

 $\sqrt{2} \sin x$, $\sqrt{2}\,\sin x$ $$\sqrt{2} \sin x$$, $$\sqrt{2}\,\sin x$$ $\int \!\! \int f(x,y)\,\mathrm{d}x\mathrm{d}y$ $$\int \!\! \int f(x,y)\,\mathrm{d}x\mathrm{d}y$$ $\mathop{\int \!\!\! \int}_{\mathbf{x} \in \mathbf{R}^2} \! \langle \mathbf{x},\mathbf{y}\rangle \,d\mathbf{x}$ $\mathop{\int \!\!\! \int}_{\mathbf{x} \in \mathbf{R}^2} \! \langle \mathbf{x},\mathbf{y}\rangle \,d\mathbf{x}\nonumber$ $x_1 = a+b \mbox{ and } x_2=a-b$ $x_1 = a+b \mbox{ and } x_2=a-b\nonumber$ $x_1 = a+b ~~\mbox{and}~~ x_2=a-b$ $x_1 = a+b ~~\mbox{and}~~ x_2=a-b\nonumber$

Vertical spacing

 Without vertical space adjustmentShow that the solution of the partial  differential equation$\frac{\partial^2 u}{\partial x^2} = \frac{1}{k} \frac{\partial u}{t}$         which satisfies the conditions: Show that the solution of the partial  differential equation$\frac{\partial^2 u}{\partial x^2} = \frac{1}{k} \frac{\partial u}{t}$         which satisfies the conditions: With vertical space adjustmentShow that the solution of the partial  differential equation$\frac{\partial^2 u}{\partial x^2} = \frac{1}{k} \frac{\partial u}{t}$         which satisfies the conditions:Show that the solution of the partial  differential equation$\frac{\partial^2 u}{\partial x^2} = \frac{1}{k} \frac{\partial u}{t}$         which satisfies the conditions: Without vertical space adjustment$$\displaystyle \frac{\partial u(x,t)}{\partial x} =0$$,$$u(x,t)$$ is bounded for all $$-a\le x \le a$$ as $$t\to \infty$$,$$u(x,t)\big|_{t=0}= |x|$$,  for $$-a \le x\le a$$$$\displaystyle \frac{\partial u(x,t)}{\partial x} =0$$,$$u(x,t)$$ is bounded for all $$-a\le x \le a$$ as $$t\to \infty$$,$$u(x,t)\big|_{t=0}= |x|$$,  for $$-a \le x\le a$$ With vertical space adjustment$$\displaystyle \frac{\partial u(x,t)}{\partial x} =0$$, $$\\[10pt]$$$$u(x,t)$$ is bounded for all $$-a\le x \le a$$ as     $$t\to \infty$$, $$\\[8pt]$$$$u(x,t)\big|_{t=0}= |x|$$,  for $$-a \le x\le a$$$$\displaystyle \frac{\partial u(x,t)}{\partial x} =0$$, $$\\[10pt]$$$$u(x,t)$$ is bounded for all $$-a\le x \le a$$ as     $$t\to \infty$$, $$\\[8pt]$$$$u(x,t)\big|_{t=0}= |x|$$,  for $$-a \le x\le a$$

textstyle, displaystyle, scriptstyle and sizes!

 In-line maths elements can be set with a different style: $$f(x) = \displaystyle \frac{1}{1+x}$$. The same is true the other way around:   \begin{eqnarray*} f(x) = \sum_{i=0}^{n} \frac{a_i}{1+x} \\ \textstyle f(x) = \textstyle \sum_{i=0}^{n} \frac{a_i}{1+x} \\ \scriptstyle f(x) = \scriptstyle \sum_{i=0}^{n} \frac{a_i}{1+x} \\ \scriptscriptstyle f(x) = \scriptscriptstyle \sum_{i=0}^{n} \frac{a_i}{1+x} \end{eqnarray*}  In-line maths elements can be set with a different style: $$f(x) = \displaystyle \frac{1}{1+x}$$. The same is true the other way around:\begin{eqnarray*} f(x) = \sum_{i=0}^{n} \frac{a_i}{1+x} \\ \textstyle f(x) = \textstyle \sum_{i=0}^{n} \frac{a_i}{1+x} \\ \scriptstyle f(x) = \scriptstyle \sum_{i=0}^{n} \frac{a_i}{1+x} \\ \scriptscriptstyle f(x) = \scriptscriptstyle \sum_{i=0}^{n} \frac{a_i}{1+x} \end{eqnarray*}

### Accents, over/under-line/brace...

 $\left] 0,1 \right[ + \lceil x \rfloor -\langle x,y\rangle$ $$\left] 0,1 \right[ + \lceil x \rfloor - \langle x,y\rangle$$ ${n+1\choose k} = {n\choose k} +{n \choose k-1}$ ${n+1\choose k} = {n\choose k} + {n \choose k-1}\nonumber$ $\underbrace{n(n-1)(n-2)\dots(n-m+1)}_{\mbox{total of $m$factors}}$ $\underbrace{n(n-1)(n-2)\dots(n-m+1)}_{\mbox{total of$m$factors}\nonumber}$ $\hat{x}$, $\check{x}$, $\tilde{a}$,$\bar{\ell}$, $\dot{y}$,$\ddot{y}$,$\vec{z_1}$, $\vec{z}_1$ $\hat{x}$, $\check{x}$, $\tilde{a}$, $\bar{\ell}$, $\dot{y}$, $\ddot{y}$, $\vec{z_1}$, $\vec{z}_1$ $\hat{T} = \widehat{T}$,$\bar{T} =\overline{T}$, $\widetilde{xyz}$,$\overbrace{a+\underbrace{b+c}+d}$ $\hat{T} = \widehat{T}$,$\bar{T} = \overline{T}$, $\widetilde{xyz}$,$\overbrace{a+\underbrace{b+c}+d}$ $\overline{\overline{a}^2+\underline{xy}+\overline{\overline{z}}}$ $$\overline{\overline{a}^2+\underline{xy}+\overline{\overline{z}}}\nonumber$$ $\underbrace{a+\overbrace{b+\cdots}^{{}=t}+z}_{\mathrm{total}} ~~a+{\overbrace{b+\cdots}}^{126}+z$ $$\underbrace{a+\overbrace{b+\cdots}^{{}=t}+z}_{\mathrm{total}} ~~a+{\overbrace{b+\cdots}}^{126}+z\nonumber$$

n