Repository of Questions, Problems and More

Problem/CM-01008 Periodic Motion

For page specific messages
For page specific messages

Question : Find potential if the force acting on a particle in one dimension is  $$ F(x) = m \omega_0^2(x-2bx^3).$$ Determine the potential energy asuming $V_0=0$ and show that the period of oscillations as a function of amplitude $a$ is $$ T =\frac{2}{\omega_0}\int_{-a}^a \frac{dx}{(a^2-x^2)(1- b(a^2+x^2))} $$
and that for small $a$  $$ T = \frac{2\pi}{\omega_0}(1+ \frac{3}{4}b a^2) $$



Exclude node summary :