Skip to main content
hiddenLink
Welcome Guest!
Login
Register
Reset password
Search
Browse content
Discussion forums
Blogs
Create content
WYSIWYG editor
Plot functions
Create drawings
Draw path diagram
WYSIWYG LaTeX Code Generator
Convert from LaTeX table/list to HTML table/list
Print this page.
Fullscreen mode (only) for this page.
For Persistent fullscreen mode, use F11 function key.
Message
Help
Overview
Query/feedback
Logout
TeXEd
Show TeX
Notices
Complex Variables --- Principles and Problem Sessions :: Start-Page
Complex Variables --- Principles and Problem Sessions === SOLUTIONS and ERRATA
Solutions to Problem Sessions
\(\S\S 3.6\) :: Discontinuity across the branch cut
Chapter 7 :: Contour Integration
\(\S\S\) 7.1 Tutorial \( \int_0^\infty Q(x)\, dx \)
\(\S\S 7.1 Q[1]\) \(\int_0^\infty \frac{dx}{x^2+1}\)
\(\S\S 7.1 Q[2]\) \(\int_0^\infty \frac{\cos ax}{x^2+1}\,dx\)
\(\S\S 7.2\) Tutorial :: Improper Integrals of Rational Functions
\(\S\S 7.2\) Q[1] \(\int_0^\infty \frac{1}{(x^2+x+1)(x+1)}\, dx =\frac{\pi}{3\surd 3}\)
\(\S\S 7.2 Q[2]\) \(\int_0^\infty \frac{1}{x^3+1}dx=\frac{2\pi}{3\surd 3}\)
\(\S\S\) 7.3 Exercise ----- Integrals of Type \(\int Q(x) \,dx\)
\(\S\S\) 7.3 Q[1] \(\int_0^\infty\frac{1}{(x^2+p^2)^2} dx \)
\(\S\S\) 7.3 Q[2] \(\int_0^\infty \frac{x}{x^4+1} dx\)
\(\S\S\) 7.3 Q[3] \(\int \frac{dx}{x^4+x^2+1}\)
\(\S\S\) 7.3 Q[4] \(\int_{-\infty}^\infty \frac{dx}{(x^2+x+1)^2}\)
\(\S\S\) 7.3 Q[5] \int_{-\infty}^{\infty}\(\frac{(x^2+2)}{(x^4+10x^2+9)}\)
\(\S\S\) 7.3 Q[6] \(\int_0^\infty \frac{(x-2)}{(x^4+10x^2+9)} dx\)
\(\S\S\) 7.3 Q [7] \(\int_0^\infty \frac{x^2\, dx}{x^6+1}\)
\(\S\S\) 7.3 Q [8] \(\int_0^\infty \frac{dx}{(x^2+p^2)(x^2+q^2)}\)
\(\S\S\) 7.3 Q[9] \(\int_0^\infty \frac{x^2}{x^4+1}dx \)
\(\S\S\) 7.3 Q[10] \(\int_0^\infty \frac{x^2}{x^{2N+1}+1}\, dx\)
\(\S\S\) 7.3 Q[11] \(\int_0^\infty \frac{x^4}{x^{2N}+1} dx\)
\(\S\S\) 7.3 Q[12] \( \int_0^\infty \frac{dx}{x^N+1} \)
\(\S\S\) 7.3 Q[13] \(\int_0^\infty \frac{x^{2N}}{x^{2M}+1} \, dx\)
\(\S\S\) 7.3 Q[14] \(\int_0^\infty \frac{dx}{(p+qx^2)^N}\)
\(\S\S\) 7.4 Exercise ------ Integrals of \({\sin x \choose \cos x}\) with Rational Functions
\(\S\S\) 7.4 Q[1] \(\int_0^\infty \frac{x\sin p x\, dx}{x^2+1} \)
\(\S\S\) 7.4 Q[2] \(\int \frac{\cos p x\, dx}{(x^2+1)^2}\)
\(\S\S\) 7.4 Q[3] \(\int_0^\infty \frac{\cos px\, dx}{(x^2+1)(x^2+4)}\)
\(\S\S\) 7.4 Q[4] \(\int_0^\infty \frac{\sin x \, dx}{(x^2+4)(x^2+9)}\)
\(\S\S\) 7.4 Q[5] \(\int_0^\infty \frac{x^2\cos px \, dx }{x^4+1}\)
\(\S\S\) 7.4 Q[6] \( \int_0^\infty \frac{x\sin p x\, dx}{x^4+1}\)
\(\S\S\) 7.4 Q[7] \(\int_0^\infty \frac{x\cos \alpha x\, dx}{x^2-2x+10} \)
\(\S\S\) 7.4 Q[9] \( \int_0^\infty \frac{\cos a x \, dx}{(x^2+b^2)^2+c^2}\)
\(\S\S\) 7.4 Q[10] \(\int_0^\infty \frac{x \sin ax\, dx}{(x^2+b^2)^2 + c^2}\)
\(\S\S\) 7.4 Q[11] \(\int_0^\infty \frac{\sin^2 ax \cos^2 bx}{\beta^2+x^2} dx\)
\(\S\S\) 7.4 Q[12] \(\int_0^\infty \frac{x\sin^2 ax \cos^2bx}{\beta^2+x^2} dx\)
\(\S\S 7.5\) Tutorial ----- Integration Around a Branch Cut
\(\S\S 7.5\) \(\int_0^\infty \frac{x^{-c}}{x+1}dx =\frac{\pi}{\sin c\pi} \)
\(\S\S 7.5 Q[2]\) \(\int_0^\infty \frac{\log x }{(x^21)^2} \, dx = -\frac{\pi}{4}\)
\(\S\S\) 7.6 Integration around a branch cut
\(\S\S\) 7.6 Q[1] \(\int_0^\infty \frac{x^{\frac{1}{2}}}{(x+4)(x+25)}\)
\(\S\S\) 7.6 Q[2] \(\int_0^\infty \frac{x^{p-1}}{x^2+2x+2}\)
\(\S\S\) 7.6 Q[3] \(\int_0^\infty \frac{x^{p-1}}{(x+1)^2}\, dx\)
\(\S\S\) 7.6 Q[4] \(\int_0^\infty \frac{x^p}{x^2+a^2}\, dx\)
\(\S\S\) 7.6 Q[5] \(\int_0^\infty \frac{x^p}{(x^2+a^2)^2}\, dx\)
\(\S\S\) 7.6 Q[7] \( \int_0^\infty \frac{x^p}{x^6+1}\, dx \)
\(\S\S\) 7.6 Q[8] \( \int_0^\infty \frac{x^{1/2}}{(x^2+1)(x^2+4)}\, dx\)
\(\S\S\) 7.6 Q[9] \(\int_0^\infty \frac{x^{p-1}}{1+x^q}\)
\(\S\S\) 7.6 Q[11] \(\int_1^\infty \frac{(x-1)^{p-1}}{x^2}\,dx\)
\(\S\S\) 7.6 Q[12] \(\int_1^\infty\frac{(x-1)^{p-1}}{x^3}\, dx\)
\(\S\S\) 7.6 Q[13] \(\int_0^\infty \frac{ x^{p-1} dx}{x^3+b^3}\)
\(\S\S\) 7.6 Q[14] \(\int_0^\infty \frac{x^p}{x^2+2x\cos\alpha +1} \)
\(\S\S\) 7.7 Integral of Type \(\int \log x Q(x) \,dx\)
\(\S\S\) 7.7 Q[1] \( \int_0^\infty \frac{\log x}{x^2+1}\,dx\)
\(\S\S\) 7.7 Q[2] \(\int_0^1 \frac{\log x}{x^3+1}\)
\(\S\S\) 7.7 Q[3] \(\int_0^\infty \frac{\log^2x}{x^2+1}\, dx\)
\(\S\S\) 7.7 Q[4]-[6] \(\int_0^\infty \frac{\log^n x}{x^2+1}\, dx, n=4,6,8 \)
\(\S\S\) 7.7 Q[7] \(\int_0^\infty \frac{\log(px) }{x^2+q^2}\, dx\)
\(\S\S\) 7.7 Q[8] \(\int_0^\infty \frac{x^2\log x}{(x^2+1)^2} \, dx\)
\(\S\S\) 7.7 Q[9] \(\int\frac{\log x}{(x^2+1)(1+q^2x^2)}\, dx\)
\(\S\S\) 7.7 Q[11] \(\int_0^\infty \frac{\log x\, dx}{x^2+2ax\cos\alpha + a^2}\)
\(\S\S\) 7.7 Q[12] \(\int_0^\infty \frac{x^2 \log x\, dx }{(a^2+b^2x^2)(1+x^2)}\)
\(\S\S\) 7.8 Hyperbolic Functons
\(\S\S 7.8 Q[1]\) \( \int_{-\infty}^\infty \frac{\exp(kx)}{1+\exp(x)}\ dx\)
\(\S\S 7.8 Q[2]\) \(\int_0^\infty \frac{1}{(x^2+1){\cosh \pi x \,dx}}= \frac{1}{2}(4-\pi) \)
\(\S\S\) 7.9 Exercise ----- Exponential and Hyperbolic Functions
\(\S\S\) 7.9 Q[1] \(\int_{-\infty}^\infty \frac{x\exp(-x)}{1+\exp(-4x)}\, dx\)
\(\S\S\) 7.9 Q[3] \(\int_{-\infty}^\infty \frac{x \exp(p x)}{1+ \exp(x)}\, dx\)
\(S\S\) 7.9 Q[4] \(\int_{-\infty}^\infty x^2 \frac{\exp(px)}{1+ \exp(x)}\, dx\)
\(\S\S\) 7.9 Q[5] \( \int _0^\infty x \frac{[1-\exp(-x) ]\exp(-x)}{1+ \exp(-3x)} \,dx\)
\(\S\S\) 7.9 Q[6] \(\int_0^\infty \frac{x\{\exp(-qx) + \exp[(q-p)x]\}}{1- \exp(-px)}\, dx \)
\(\S\S\) 7.9 Q[7]-[10] \(\int_0^\infty \frac{x^n}{\cosh \pi x} \, dx, n=2,4,6,8\)
\(\S\S\) 7.9 Q[11] \(\int_0^\infty \frac{x \sinh ax}{\cosh bx}\, dx\)
\(\S\S\) 7.9 Q[12] \( \int_0^\infty \frac{\cosh ax}{\cosh bx}\, dx \)
\(\S\S\) 7.9 Q[13] \(\int_0^\infty \frac{x^2 \cosh ax}{\cosh bx}\, dx \)
\(\S\S\) 7.9 Q[14] \(\int_0^\infty \frac{dx}{\cosh ax + \cos t} \)
\(\S\S\) 7.10 Tutorial Principal Value Integrals
\(\S\S 7.10\) Q[1] \(\int_0^\infty \frac{\sin^2x}{x^2}\,dx =\frac{\pi}{2}\)
\(\S\S 7.10\) Q[2] \((a) PV\int_0^\infty \frac{\log x}{x^2-1}=\frac{\pi^2}{4}\quad \quad \int _0^\infty \frac{log x}{(x^2+1)}\, dx = 0\)
\(\S\S\) 7.11 Exercise Integrals Requiring Indented Contours
$ \S\S 7.11$ Q[1] $ \int_0^\infty \frac{(1-\cos a x)}{x^2}dx, \quad a >0 $
\(\S\S 7.11\) Q[2] \(\int_0^\infty \frac{(\sin x - x\cos x)}{x^3} dx \)
\(\S\S\) 7.11 Q[3] \( \int_0^\infty \frac{\sin^3x}{x^3} dx \)
\(\S\S\) 7.11 Q[4] \( \int_0^\infty \frac{x^3-\sin^3x}{x^5} dx\)
\(\S\S\) 7.11 Q[5] \( \int_0^\infty \frac{\sin (p x) \sin (q x)}{x^2} dx\)
\(\S\S\) 7.11 Q[6] \( \int_0^\infty \frac{\sin^2 px \cos 2qx}{x^2} dx \)
\(\S\S\) 7.11 Q[7] \(\int_0^\infty \frac{\cos px - \cos qx}{x^2} dx\)
\(\S\S\) 7.11 Q[8] \( \int_0^\infty \frac{\sin \pi x}{x(1-x^2)} dx\)
\(\S\S\) 7.11 Q[9] \( \int_0^\infty \frac{1}{1-x^4} dx \)
\(\S\S\) 7.11 Q[10] \(\int_0^\infty \frac{x^{p-1}}{1-x^3} dx\)
\(\S\S 7.12\) Series Summation and Expansion
\(\S\S 17.12\) Q[1] $\displaystyle \pi\, \text{cosec} \pi z = \frac{1}{z} + \sum_{m\ne0}(-1)^m \Big( \frac{1}{z-m}+\frac{1}{m} \Big) $
\(\S\S 7.12\) Q[5] $\displaystyle \frac{1}{1^2} +\frac{1}{2^2} + \frac{1}{3^2} + \cdots + \frac{1}{m^2} + \cdots = \frac{\pi^2}{6}$
\(\S\S\) 7.13 What you see is not what you get
\(\S\S\) 7.13 Q[1]
\(\S\S\) 7.13 Q[2]
\(\S\S\) 7.13 Q[3]
\(\S\S\) 7.13 Q[4]
\(\S\S\) 7.13 Q[5]
\(\S\S\) 7.13 Q[6]
\(\S\S\) 7.13 Q[7]
\(\S\S\) 7.13 Q[8]
\(\S\S\) 7.13 Q[9]
\(\S\S\) 7.13 Q[10]
\(\S\S\) 7.13 Q [11]
\(\S\S\) 7.13 Q[12]
\(\S\S\) 7.14 Integrals from Statistical Mechanics
\(\S\S\) 7.14 Q[1] \(\int_0^\infty \frac{e^x}{(e^x+1)^2} =\frac{1}{2}\)
\(\S\S\) 7.14 Q[2] \(\int_0^\infty \frac{e^x}{(e^x+1)}=\frac{\pi^2}{6}\)
\(\S\S\) 7.14 Q[3] \(I_m=\int_{-\infty}^\infty \frac{x^m e^x}{(e^x+1)^2}\)
\(\S\S\) 7.14 Q[4] \(J(k) = \int_{-\infty}^\infty \frac{e^{ikx} e^x}{(e^x+1)^2}\)
\(\S\S\) 7.14 Q[5] \(\int_0^\infty \frac{x^3}{e^x-1}=\frac{\pi^4}{15}\)
\(S\S\) 7.15 Alternate Routes Improper Integrals
\(\S\S\) 7.15 Q[1]
\(\S\S\) 7.15 Q[2]
\(\S\S\) 7.15 Q[4]
\(\S\S\) 7.16 Killing Two Birds with One Stone
\(\S\S\) 7.16 Q[1]
\(\S\S\) 7.16 Q[2]
\(\S\S\) 7.16 Q[3]
\(\S\S\) 71.6 Q[4]
\(\S\S\) 7.17 Open Ended : Food for Your Thought
\(\S\S7.17\) Q01
\(\S\S\ 7.17\) Q06
\(\S\S 7.17\) Q07
\(\S\S7.17\) Q08
\(\S\S\) 7.18 Mixed Bag : Improper Integrals
\(\S\S7.18\) Q9
Errata for Complex Variables --- Principles and Problem Sessions
\(\S\S 3.6\) Exercise Discontinuity across the branch cut (ERRATA)
\(\S\S\) 7.6 Q[5] \(\int_0^\infty \frac{x^p}{(x^2+a^2)^2}\, dx\)
For page specific messages
For page specific messages
\(\S\S\) 7.6 : :
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
Download: CV0706Q05.pdf
(536.42 KB)
Exclude node summary :
n
Exclude node links:
0
‹ \(\S\S\) 7.6 Q[4] \(\int_0^\infty \frac{x^p}{x^2+a^2}\, dx\)
up
\(\S\S\) 7.6 Q[7] \( \int_0^\infty \frac{x^p}{x^6+1}\, dx \) ›
Log in
or
register
to post comments
Important
No Sign up
needed.
Free
access to content, authoring templates & tools.
Account needed
only to post comments or to author content.
Workspace and private messaging for
registered users
.
Sign up
with just
e-mail address
.
Your
mail filter
might take
0space
mails as
spam
. Check
SPAM
mail folder and change settings if needed.
Enter your keywords
Document categories
Handout/note (24)
Problem/question (0)
Answer/solution (0)
Q-Ans/Prob-Sol (0)
You are here
Home
»
Complex Variables --- Principles and Problem Sessions :: Start-Page
»
Solutions to Problem Sessions
»
Chapter 7 :: Contour Integration
»
\(\S\S\) 7.6 Integration around a branch cut
Top